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Abstract

For European option in multidimensional incomplete market without
transaction costs we design discreet time pricing model. At first the following
auxiliary problem is to be considered: to find the upper guaranteed value for the
expected risk depending exponentialy on a shortage. The upper guaranteed value
is a minimax of the expected risk. First we take supremum over a set of equivalent
probability measures. Then we take infimum over a set of self-financing portfolios.
Here we find conditions for the existence of a portfolio such that an infimum is
attained. We use this result to find a generalized optional decomposition for a
contingent claim. Further, we obtain conditions for the existence of a probability
measure such that the expected risk is maximal with respect to the measure. This
measure turned out to be martingale and discreet and it does not belong to the set
of equivalent measures. Finally, we demonstrate that our auxiliary results make it
possible to obtain explicit pricing formulas for an European option in an incomplete
market without transaction costs. In part II of the paper we present example models
of European options’ pricing in a one-dimensional market and in a market, where
support of basic probability measure is compact.

Keywords: European option, hedging, minimax portfolio, incomplete
market, optional decomposition, S-representation, risk function.

Introduction

1. For European option in multidimensional incomplete market without
transaction costs we design discreet time pricing model. The core problem
here is to choose a probability measure with respect to which one should
value an option. In complete markets it is a rule to value an option with
respect to the unique equivalent martingale measure. In incomplete markets
there is a continuum set of such a measures.

The authors of [5], [8], [9], [10], [12], [17], [19] suggest choosing an
equivalent martingale probability measure such that the price of an European
option is maximal. In these papers, one can find methods for constructing
a portfolio and calculating the price of an option for different models of
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incomplete markets. The methods are based on optional decomposition of
supermartingales.

The authors of [5] establish an optional decomposition under assumption
that the evolution of risky assets’ prices is represented by a diffusion process
with jumps. They prove the existence of a superhedging portfolio with
consumption and find the price of an option using this decomposition.

The authors of [9], [12], [19] prove the existence of an optional
decomposition (for contingent claims) with respect to a class of
equivalent martingale measures in incomplete arbitrage-free markets without
transaction costs. In these papers, they assume that the evolution of risky
assets’ prices is given by a semimartingale. In that case, they provide a
method for calculating the European options’ prices in incomplete markets
in terms of this decomposition.

In [8], [10], [17], the authors also establish the existence of an optional
decomposition of contingent claims with respect to equivalent martingale
measures in incomplete arbitrage-free markets without transaction costs in
discrete time and provide a method for option pricing in terms of this
decomposition.

In [11] for an abstract model of market they have found necessary and
sufficient conditions for existence of representation for an upper hedging price
π(B), where B is a nonnegative contingent claim in the form of functional
sup
η∈D

EηB and D is a set of nonnegative random variables. There is also a

detailed review of results on theory of European options’ superhedging in
incomplete markets.

Note that this approach to option pricing requires calculation of a
essential supremum over a set of martingale measures of functionals’
conditional expectations, where the functionals are defined on the trajectories
of risky assets’ prices; calculation of this essential supremum is a substantial
mathematical problem. For this reason, in [5], [8], [9], [10], [12], [17],
[19], there is a lack of explicit formulas describing the portfolio process
and the corresponding process of the capital evolution. It is well known
[1], [6], [13] that the calculation of essential supremum of additive or
multiplicative functional’s conditional expectation (where a functional is
defined on trajectories of a controlled random process) is an object of
stochastic optimal control. In this theory, they solve the problem using
methods of the stochastic dynamic programming (see, e.g., [5]).

2. In this paper, we design pricing model for European option in
incomplete market without transaction costs when time is discrete applying
the minimax principle (in contrast to [5], [8], [9], [10], [12], [17], [19]) that
can be formulated as follows: (i) as far as the probability distribution of the
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risky assets’ price evolution process is unknown, one should suppose that it
maximizes the price of an European option; (ii) one should buy with minimal
capital as many risky assets as to be sure to cover an option’s contingent
claim. In this paper, the realization of this principle is based on the following
two opportunities. The first one is the reduction of a minimax calculation
problem to a game problem of optimal stochastic control. The second one is
based on the reduction of an European options pricing problem to a game
problem of optimal stochastic control with a multiplicative functional. The
last opportunity follows from the results of [4].

3. Let us outline our approach to European option’s price modelling. We
consider a multidimensional incomplete market specified by a semimartingale
and a European option with finite time horizon and bounded pay-off.

At first we study auxiliary game problem. Specifically, suppose that there
are two players watching the d-dimensional sequence of risky assets’ prices.
The first player represents a market. Its strategies are probability measures
defined on the trajectories of risky assets’ prices and equivalent to some
basic measure. The second player manages assets. His strategies are self-
financing portfolios (described by multidimensional predictable sequences).
We suppose that the risk function (the payoff function of the second player):
(i) depends on his shortfall; (ii) is exponential (this choice will be explained
later). As in [10], the shortfall is the difference between a contingent claim
and the profit gained by the second player from the portfolio during the
option lifetime, i.e., We also suppose that the players are "rational" and
choose their strategies independently. The first player maximizes the expected
risk over a set equivalent probability measures. The second player minimizes
the expected risk over admissible (in a sense clarified below) self-financing
portfolios. Therefore we have the minimax problem.

The idea to consider such a problem goes back to [4], where the problem
was solved for a special case. The authors used the method of stochastic
dynamic programming to prove the existence of the S-representation of
martingales (for the definition of S-representation, see [17]). In this paper,
we generalize this result (see Theorem 4). Note that we have chosen the
exponential risk function just because it allows us to apply the above-
stated method. The solution of our auxiliary problem (2) allows us: (1) to
establish an analogue of the optional decomposition for any FS-measurable
bounded function fN , i.e., for any contingent claim in the European options’
problem in incomplete markets without transaction costs; (2) to investigate
the properties of the measure with respect to which the essential supremum of
Lebesgue integral is attained; (3) to choose a probability measure with respect
to which one should estimate an option. Finally, all these made it possible to
design our pricing model for European option in incomplete market, namely:
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(1) to find a portfolio of assets at any moment and the corresponding capital;
(2) to calculate the upper bound for spread.

4. Let us briefly discuss the structure of the paper. The paper is in
two parts. Here contents of the first part is outlined. Section 1 deals with
our auxiliary game problem (2). First, it is shown that we can use the
method of stochastic dynamic programming for that problem, i.e. we prove
that sequence of upper guaranteed values satisfies recurrent relation (5)
(Theorem 1). Further, we determine conditions for the existence of admissible
portfolio such that the outer essential infimum is attained (Theorem 3).
We use this result to prove that the contingent claim allows an optional
decomposition with respect to the class of equivalent measures (Theorem 4).
Further, we find conditions for the existence of a probability measure with
respect to which the inner essential supremum is attained (Theorem 6). From
these results existence condition for solution of auxiliary problem follows
(Theorem 8). For convenience of reading all proves are grouped in Section 3.

In Section 2, we design our pricing model for European option in an
incomplete market without transaction costs when time is discrete. First, we
use Theorem 4 (an analog of the optional decomposition) to link auxiliary
problem (2) and the superhedging problem [17]; namely, we construct perfect
superhedging portfolio for a European option in an incomplete market
without transaction costs (Theorem 10). Also here we prove, that the capital
of the above-mentioned perfect superhedging portfolio (constructed for the
exponential risk function) is less than or equal to the capital of any other
perfect superhedging portfolio at any time moment. This means that the
capital of the minimal prefect superhedging portfolio coincides with the upper
bound of the spread. Further, we prove that the measure with respect to
which essential supremum is attained (constructed in Section 1, we call it the
worst-case measure) is a martingale one (Theorem 11). So, a contingent claim
admits an S-representation [17] with respect to the measure (Theorem 12).
Besides, we prove that there is discrete worst-case measure (Theorem 13) and
in the case of incomplete market it is not equivalent to the basic measure
(Theorem ??). It follows from these statements that we can identify the
initial incomplete market with a complete one with respect to the worst-case
measure and the corresponding minimal perfect superhedging portfolio has
zero consumption. This portfolio is called a minimax hedging portfolio. Note
that the capital of the minimax hedgeing portfolio coincides with the upper
bound of the spread. And as the market is complete with respect to the
worst-case measure, it is possible to calculate it explicitly. All statements of
Section 2 are proved in Section 4.

The second part of the paper consists of two sections with examples.
Using our pricing model of part I, in Section 5 we construct the minimax
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hedging portfolio for a European option in a one-dimensional finite
incomplete market. In Section 6, we give an example of a European option’
pricing in an one-dimensional incomplete compact market.

§1. Auxiliary minimax problem

In this section we consider auxiliary minimax problem (2) and, as a result,
find existence conditions for it’s solution. These results are essential for our
prising model to be constructed in Section 2. Though problem (2) and our
approach to the solution are interesting in themselves.

1.1. First let us introduce some notation.
1.1.1. Let {St,Ft}t∈N+ be a d-dimensional adapted random sequence on

the stochastic basis
(
Ω,F , (Ft)t∈N+ ,P

)
. Suppose that:

(i) a probability measure P is fixed (this measure is said to be basic [17]);
(ii) for any t ∈ N+ the σ-algebra Ft = FS

t � σ (Su, u ≤ t).
Together stochastic basis

(
Ω,F , (Ft)t∈N+ ,P

)
and {St,Ft}t∈N+ specify a

financial {1, S}-market [17].
By �N we denote the set of all probability measures on

(
Ω,F ,

(
FS

t

)
t∈N0

)

such that any measure Q ∈ �N is equivalent to the basic measure P. Without
loss of generality we suppose that P ∈ �N ; so, �N �= ∅. The set of all
martingale measures (i.e. measures with respect to which {St,Ft}t∈N0

is a
local martingale, see [17]) is denoted by MN .

The expectation of a random variable θ with respect to a probability
measure Q (P) is denoted by EQθ

(
EPθ

)
, and EQ

(
θ|FS

t

)
is the conditional

expectation with respect to the measure Q and the σ-algebra FS
t .

1.1.2. Let fN (S•) be a bounded FS
N -measurable random variable, where

N ∈ N+. Here fN (S•) (or short fN) represents pay-off function of European
option with horizon N [17], [10]. We write Nk � {k, k + 1, k + 2, . . . , N},
k ∈ {0, ..., N}.

A d-dimensional FS-predictable sequence is called a strategy and is
denoted by γN

1 � {γt}t∈N1
, where N1 � {1, 2, . . . , N}. The vector γt is a

control at a time t ∈ N1. By UN
1 we denote the set of strategies. Let ŨN

1 be
an arbitrary subset of UN

1 . By Ũ t2
t1 we denote the reduction of the set ŨN

1

to {t1, . . . , t2} ⊆ N1, where t1, t2 ∈ N1 and t2 ≥ t1. Thus, we will use the
following notation γt2

t1 ∈ Ũ t2
t1 , where γt2

t1 � {γt1 , . . . , γt2}.
1.1.3.

De f i n i t i o n 1 A pair
(
Q, γN

t+1

)
∈ �N × UN

t+1 is called a t-bistrategy, t ∈
N1;

(
Q, γN

1

)
∈ �N × UN

1 is a bistrategy, and γN
t+1 ∈ ŨN

t+1 is a t-strategy.
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De f i n i t i o n 2 An estimate of a t-bistrategy
(
Q, γN

t+1

)
, t ∈ N1, is an FS

t -

measurable random variable (denoted by I
Q,γN

t+1

t (St
0)) defined by

I
Q,γN

t+1

t

(
St
0

)
� EQ

[
exp

{
fN (S•)−

N∑
i=t+1

(γi,∆Si)

}
|FS

t

]
. (1)

Above (•, •) is the scalar product in a multidimensional Euclidean space,
∆Si � Si − Si−1.

De f i n i t i o n 3 A random variable fN (S•) and a strategy γN
1 are

admissible if ess sup
Q∈�N

EQI
Q,γN

1
0 (S0) < ∞ Q− a.s.

As fN is bounded Q-a.s., so pair
(
fN , γ

N
1

)
is admissible if

ess sup
Q∈�N

EQ exp

{
−

N∑
i=1

(γi,∆Si)

}
< ∞ Q − a.s. For given fN , by DN

1 we

denote the set of all admissible strategies γN
1 . Note, that DN

1 �= ∅ as trivial
strategy belongs to admissible pair

(
fN , γ

N
1

)
for any Q-a.s. bounded fN .

De f i n i t i o n 4 A bistrategy
(
Q, γN

1

)
∈ �N ×DN

1 is said to be admissible.

We consider the following problem:

I
Q,γN

1
0 (S0) −→ ess inf

γN
1 ∈DN

1

ess sup
Q∈�N

. (2)

De f i n i t i o n 5 The random variable V 0 � ess inf
γN
1 ∈DN

1

ess sup
Q∈�N

I
Q,γN

1
0 (S0) is

called the upper guaranteed value.

Definitions of ess inf and ess sup with respect to a basic measure P can
be found in [7], [10], [17], [18].

Note that V 0 is an FS
0 -measurable random variable.

De f i n i t i o n 6 The triplet
(
Q∗, γ∗N

1 , V 0

)
:

V 0 = I
Q∗,γ∗N

1
0 (S0) . (3)

is a solution of the minimax problem (2); here the probability measure Q∗ is
called the worst-case measure, the strategy γ∗N

1 ∈ DN
1 is called the minimax

strategy and together
(
Q∗, γ∗N

1

)
are referred to as the minimax bistrategy.

6



Mathematical model of European option pricing in incomplete market without  transaction costs (discrete time). Part I.	 11

1.2. To solve problem (2) we use the stochastic version of dynamic
programming. So we define sequence of upper guaranteed values as follows.

De f i n i t i o n 7 A random variable

V t � ess inf
γN
t+1∈DN

t+1

ess sup
Q∈�N

I
Q,γN

t+1

t

(
St
0

)
(4)

is called the upper guaranteed value at a time t ∈ N0.

According to the definitions of ess inf and ess sup (see [10], [17]) V t is an
FS

t -measurable random variable.
In this section, we give a recurrent relation for the sequence

{
V t,FS

t

}
t∈N0

.

T h e o r e m 1 Suppose fN (S•) is an FS
N -measurable bounded random

variable. Then
{
V t,FS

t

}
t∈N0

satisfies the recurrent relation P-a.s.

{
V t = ess inf

γ∈Dt+1

ess sup
Q∈�N

EQ
[
V t+1e

−(γ,∆St+1)|FS
t

]
, 0 ≤ t < N,

V t|t=N = efN (S•).
(5)

C o r o l l a r y 1 Suppose, the assumptions of Theorem 1 are satisfied. Then
(1) for any t ∈ N1 and Q ∈ �N , the following inequality holds P-a.s.:

V t−1 ≥ ess inf
γ∈Dt

EQ
[
V te

−(γ,∆St)|FS
t−1

]
; (6)

(2) for any t ∈ N1 and γ ∈ Dt, the following inequality holds P-a.s.:

V t−1 ≤ ess sup
Q∈�N

EQ
[
V te

−(γ,∆St)|FS
t−1

]
. (7)

1.3. Upper guaranteed value might be a priori estimated as follows.

T h e o r e m 2 Suppose:
(1) conditions of Theorem 1 are satisfied;
(2) there exists constant c2 such that |fN(S•)| ≤ c2 P-a.s.;
(3) �N ∩MN �= ∅.
Than for any t ∈ N1 the following inequalities hold P-a.s.

e−c2 ≤ V t ≤ ec2 . (8)

1.4. In this subsection we give a sufficient condition for the “outer”
essential infimum in (5) to be attained.

7
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T h e o r e m 3 Suppose:
(1) the assumptions of Theorem 1 are satisfied;
(2) �N ∩MN �= ∅.
Then there is a strategy {γ∗

t }t∈N1
∈ DN

1 such that for any t ∈ N1, P-a.s.

V t = ess inf
γ∈Dt+1

ess sup
Q∈�N

EQ
[
V t+1e

−(γ,∆St+1)|FS
t

]
= (9)

= ess sup
Q∈�N

EQ
[
V t+1e

−(γ∗
t+1,∆St+1)|FS

t

]
.

Moreover, for any t ∈ N1 and Q ∈ �N the following inequality is true:

V t−1 ≥ EQ
[
V te

−(γ∗
t ,∆St)|FS

t−1

]
P−a.s. (10)

R em a r k 1 It follows from Corollary 1 that for any t ∈ N0 and Q ∈ �N ,

V t ≥ I
Q,γ∗N

t+1

t

(
St
0

)
Q (P)− a.s.,

where γ∗N
t+1 ∈ DN

t+1 is defined by (9).

1.5. In this subsection we use Theorem 3 to obtain a condition for any
FS

N -measurable bounded random variable to have a decomposition similar to
the optional decomposition [10], [17].

T h e o r e m 4 Let
{
V t,FS

t

}
t∈N0

be defined by (5). Suppose, there exist a
strategy {γ∗

t }t∈N1
∈ DN

1 satisfying (9) for any t ∈ N1. Then for any t ∈ N1

and Q ∈ �N , the sequence

∆C∗
t � ∆ lnV t − (γ∗

t ,∆St) ≥ 0, C∗
0 = 0 Q− a.s., (11)

is Q-a.s. nondecreasing and the following decomposition holds for any Q ∈
�N :

fN (S•) = lnV 0 +
N∑
i=1

(γ∗
i ,∆Si)− C∗

N Q− a.s. (12)

R em a r k 2 (1) If Yt � ess sup
Q∈�N∩MN

EQ
[
f |FS

t

]
, where f is a FS

N -measurable

bounded random variable, then in [17] (see theorem on page 674), it is proved
that

{
Yt,FS

t

}
t∈N0

is a supermartingale with respect to any Q ∈ �N ∩MN .
(2) According to [10] (see theorem 7.5 on page 330) the following

assertions are equivalent:
(i)

{
Yt,FS

t

}
t∈N0

is a supermartingale with respect to any Q ∈ �N ∩MN ;
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(ii) there are nondecreasing sequence {C∗
t }t∈N0 and d-dimensional

predictable sequence {γ∗
t }t∈N1 such that Yt admits representation Yt = Y0 +

t∑
i=1

(γ∗
i ,∆Si)−C∗

t P-a.s. This representation is called optional decomposition

or uniform Doob decomposition [5, 8, 9, 10, 12].
In contract to above mentioned works, Theorem 4:
(i) does not require sequence

{
lnV t,FS

t

}
t∈N0

to be a supermartingale with
respect to any Q ∈ �N ∩MN , �N ∩MN �= ∅;

(ii) presents constructive method which allows construction of d-
dimensional predictable minimax strategy γ∗N

1 and nondecreasing sequence
{C∗

t }t∈N0, i.e. components of optional decomposition (12);
We do not use results of [5, 8, 9, 10, 12] to prove Theorem 4.
(3) Theorem 4 implies the following inequality for any measure Q ∈ �N :

fN (S•) ≤ lnV 0 +
N∑
i=1

(γ∗
i ,∆Si) Q− a.s.

Thus if the sequence
{
St,FS

t

}
t∈N0

is a local martingale with respect
to a measure Q, then

{
lnV t,FS

t

}
t∈N0

and
{
EQ

[
fN (S•) |FS

t

]}
t∈N0

are
supermartingales with respect to any Q ∈ �N .

(4) Condition �N ∩MN �= ∅ means that (1, S)-market in consideration
is incomplete.

1.6. Theorem below provides (formal) existence conditions for the worst-
case probability measure.

T h e o r e m 5 Let ξ be any FN–measurable P-a.s. bounded random variable.
Then the following is true:

(1) there exist
probability measure λ on (Ω,F) such, that λ � Q for any Q ∈ RN ,

and
a set of non-negative F-measurable random variables {Xk}k≥1 with:

(i) EλXk = 1, k ≥ 1; (ii) sup
Q∈R

EQξ = lim
k→∞

EλXkξ;

(2) if {Xk}k≥1 is a weakly relatively compact sequence in L1 (Ω,F , λ),
then there exists probability measure Q∗ on (Ω,F):

sup
Q∈RN

EQξ = EQ∗
ξ. (13)

R ema r k 3 (1) Weakly relatively compactness condition for {Xk}k≥1 is
difficult to verify. Thus the theorem is non-usable. Still it allows us to consider
properties of problem (2) solution.

9
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(2) In contrast to [10], [17], theorem 5 provides sufficient conditions
for Lebesgue integral of bounded measurable random variable to attain it’s
supremum over the set of equivalent probability measures. Yet it is well
known [2], [16], that, as a rule, supremum is attained on finitely additive
measure. So, expectation is not defined and it is impossible to construct
solution for option’s pricing problem. That is why theorem 5 is critical for
our construction. Note, that [2], [16] present another non-usable conditions
for countable additivity of "extremal" measure.

(3) According to Dunford-Pettis theorem [10] requirement of theorem 5 for
{Xk}k≥1 to be weakly relatively compact might be rewritten as requirement for
boundedness and uniform integrability in L1 (Ω,F , λ). Moreover, if {Xk}k≥1

is weakly closed and convex, then according to James theorem [10] weakly
relatively compactness condition for {Xk}k≥1 is necessary and sufficient for
a Lebesgue integral to attain supremum.

(4) Obviously, if ξ(ω) takes values in final set or in countable (or final)
union of compact sets, then: (i) there is ω∗ ∈ Ω: ξ(ω∗) = sup

ω∈Ω
; (ii) sup

Q∈R
EQξ is

attained on Q∗: Q∗({ω∗}) = 1, Q∗(Ω \ ω∗) = 0.

1.7. Here we implement Theorems 3 and 5 to gain new recurrent relation
for the sequence of upper guaranteed values.

T h e o r e m 6 Suppose, the assumptions of Theorems 3 and 5 are satisfied.
Then

(
V t,FS

t

)
t∈N1

satisfies the recurrent relation Q∗-a.s.

{
V t−1 = EQ∗ [

V te
−(γ∗

t ,∆St)|FS
t−1

]
,

V t|t=N = exp{fN (S•)}.
(14)

1.8. From Theorems 4 and 5 an important assertion follows.

C o r o l l a r y 2 If
(
V t,FS

t

)
t∈N1

satisfies the recurrent relation (14), then
for any t ∈ N0, decomposition (11) holds with respect to the measure Q∗, i.e.,

∆ lnV t = (γ∗
t ,∆St)−∆C∗

t Q∗ − a.s. (15)

1.9. In this subsection, we give a criterion for the probability measure Q∗

to be the worst-case measure.

D e f i n i t i o n 8 Let
{
µt,FS

t

}
t∈N0

be defined by formula

µt � V t exp

{
−

t∑
i=1

(γ∗
i ,∆Si)

}
, (16)
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where V t satisfies recurrent relation (5) and {γ∗
t }t∈N1

∈ DN
1 is the minimax

strategy defined by (9). The sequence
{
µt,FS

t

}
t∈N0

is said to be an upper
S-estimating one.

R ema r k 4 It follows from Theorem 3 (equality (10)) that the upper
S-estimating sequence is a supermartingale with respect to any measure
Q ∈ �N .

T h e o r e m 7 Suppose, the assumptions of Theorem 6 are satisfied. Then
the following conditions are equivalent:

(1) Q∗ is the worst-case probability distribution;
(2) equality (14) holds for any t ∈ N1;
(3) the upper S-estimating sequence

{
µt,FS

t

}
t∈N0

is a martingale with
respect to the measure Q∗.

1.10. The main result of this section follows from Theorems 1–7.

T h e o r e m 8 Suppose that the assumptions of Theorem 6 are satisfied.
Then there exists a solution of minimax problem (2).

§2 Minimax hedging of a European option in an incomplete
market

In this section, we use the results of Section 1 to link problem (2) and
the problem of European options’ pricing in incomplete markets without
transaction costs. We also give existence conditions for the minimal perfect
superhedging portfolio (Theorem 10). We use Theorem 6 to formulate the
following assertions: (1) the worst-case measure Q∗ is a martingale one
(Theorem 11); (2) for any bounded contingent claim, there exists an S-
representation [17] with respect to Q∗ (Theorem 12). Further, we state
that the worst-case measure Q∗ is discrete and does not belong to �N

(Theorem 13). A (1, S)-market with respect to Q∗ is called the worst-
case complete market. The corresponding portfolio is called the minimax
hedging one. Finally, we provide and prove a method for finding the price
of an European option in an incomplete market without transaction costs
(Theorem 15).

2.1. In this subsection, we recall some concepts of option pricing theory
(see [17], [10]); the economic interpretation can be found in [10].

2.1.1 Let {St,Ft}t∈N0
be the d-dimensional adapted sequence defined in

Subsection 1.1.1. Suppose that this sequence describes the evolution of d

11



16	 Oleg Zverev, Vladimir Khametov, Elena Shelemekh

risky assets’ prices [17]. We also suppose that there is a riskless asset [17]
with zero return and the initial price 1. This collection of assets is called
(1, S)-market [17]. An FS

N -measurable random variable fN (S•) is called a
European contingent claim with maturity N ∈ N+ [17]. Let {βt}t∈N0

be an
FS-predictable one-dimensional sequence. Its elements can be interpreted [17]
as the quantity of a riskless asset. Let {γt}t∈N1

be an FS-predictable d-
dimensional sequence introduced in Subsection 1.1.2. Note that such a
sequence is called a strategy. The ith

(
i = 1, d

)
component of the vector

γt represents [17] the quantity of the ith risky asset at a time t ∈ N1. The
sequence of pairs π � (βt, γt)t∈N0

is called a portfolio. The capital of the
portfolio π at a time t ∈ N0 [17] in the

(
1, S(1), . . . , S(d)

)
-market is an FS

t -
measurable random variable Xπ

t such that

Xπ
t = βt + (St, γt) . (17)

The portfolio π is a self-financing one [17] if for any t ∈ N1, P-a.s.

∆βt + (St−1,∆γt) = 0. (18)

The set of all self-financing portfolios is denoted by SF .
An adapted nondecreasing sequence C �

{
Ct,FS

t

}
t∈N0

such that Ct|t=0 =

0 is called consumption [17]. The pair (π, C) is a portfolio with consumption
[17]. The capital of a portfolio with consumption (π, C) at a time t ∈ N0 is
denoted by X̂

(π)
t and defined by the formula

X̂π
t � Xπ

t − Ct. (19)

It follows from (17)–(19) that at any time t ∈ N0, the capital X̂π
t of a self-

financing portfolio with consumption (π, C) admits the representation P-a.s.

X̂π
t = X̂π

0 +
t∑

i=1

(γi,∆Si)− Ct. (20)

2.1.2. A (1, S)-market is said to be arbitrage-free [17] if the
following condition holds for the capital of any portfolio π ∈ SF : if
P (Xπ

N ≥ 0|Xπ
0 = 0) = 1, then P (Xπ

N = 0|Xπ
0 = 0) = 1. It is well known [17]

that if there is at least one martingale probability measure in a (1, S)-market,
then the market is arbitrage-free.

2.1.3. Recall [17], that an arbitrage-free (1, S)-market is complete with
respect to measure Q̃ ∈ �N ∩ MN if for any bounded fN (S•) there is a
portfolio π ∈ SF with the capital Xπ

N such that fN (S•) = Xπ
N Q̃− a.s.

12
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De f i n i t i o n 9 [17]. A one-dimensional martingale
(
Θt,FS

t

)
t∈N0

is said
to admit an S-representation with respect to the d-dimensional martingale(
St,FS

t

)
t∈N0

and the measure Q̃ ∈ �N ∩ MN if there is an FS-predictable
d-dimensional sequence {γt}t∈N1

such that for any t ∈ N0,

Θt = Θ0 +
t∑

i=1

(γi,∆Si) Q̃− a.s. (21)

The following assertion is well known (see [10], [17]).

T h e o r e m 9 Suppose that Q̃ ∈ MN ∩ �N ( �= ∅). Then the following
conditions are equivalent:

(1) (1, S)-market is complete;
(2) MN ∩ �N =

{
Q̃
}
;

(3) any local martingale
(
Θt,FS

t

)
t∈N0

admits an S-representation with
respect to the measure Q̃ ∈ MN ∩ �N .

That is why they say [10], [17], that an arbitrage-free (1, S)-market is
incomplete if |MN ∩ �N | > 1.

2.1.4. Generally speaking, the above-defined (see Subsection 2.1.1) (1, S)-
market is incomplete. Thus, there is a problem of selecting a measure with
respect to which one should calculate the price of an European option. As was
previously mentioned, we use the minimax approach to solve this problem.
This approach allows us to describe a (1, S)-market by means of the worst-
case probability distribution. There we will need results of Section 1.

2.1.5. A (1, S)-market is said to be non-redundant [10], if for any t ∈ N0

and Q ∈ RN (γt,�St) = 0 Q-a.s. implies Q-a.s. triviality for γt. Note, non-
redundant condition is not essential: one can fairly exclude "excessive" assets.

2.2. Now we give the definition of minimax superhedging portfolio with
consumption.

De f i n i t i o n 10 [17]. A self-financing portfolio with consumption (π, C)
in a (1, S)-market in the problem of European option pricing with contingent
claim fN (S•) is said to be superhedging with consumption if fN (S•) ≤
X̂π

N P−a.s.

De f i n i t i o n 11 [17]. A superhedging portfolio with consumption (π, C)
is a perfect one if

fN (S•) = X̂π
N P−a.s. (22)

13
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Conditions for the existence of a perfect superhedging portfolio with
respect to a measure Q ∈ MN ∩ �N can be found in [17] (see Theorem 2,
p. 652) and in [10] (see Theorem 7.13, p. 335).

De f i n i t i o n 12 A perfect superhedging portfolio with consumption
(π∗, C∗) is the minimal one if for any other perfect superhedging portfolio
with consumption (π, C) and for any t ∈ N0, the inequality holds P-a.s.:

X̂π∗

t ≤ X̂π
t . (23)

In this subsection, we give conditions for the existence of the minimal
perfect superhedging portfolio with consumption. These conditions are based
on Theorem 4. Moreover, the assertion given below links problem (2) to
the problem of minimax perfect superhedging portfolio construction for a
European option in an incomplete (1, S)-market.

T h e o r e m 10 Consider a (1, S)-market. Suppose that the assumptions of
Theorem 4 are satisfied. Then the minimal perfect superhedging portfolio with
consumption (π∗, C∗) exists with respect to any Q ∈ �N , namely

(1) self-financing portfolio π∗ = {β∗
t , γ

∗
t }t∈N1

, where {γ∗
t }t∈N1

∈ DN
1 is an

admissible predictable sequence satisfying (9), and {β∗
t }t∈N0

is defined by
{

∆β∗
t + (St−1,∆γ∗

t ) = 0,
β∗
t |t=0 = β∗

0 ,
(24)

one can choose β∗
0 = lnV 0 (which can be obtained using (5)) and γ∗

0 = 0; for
any t ∈ N0, the capital of the portfolio π∗ can be represented as

Xπ∗

t = β∗
t + (γ∗

t , St) Q− a.s. (25)

(2) for any t ∈ N0 and Q ∈ �N , the capital X̂π∗
t of the superhedging

portfolio with consumption (π∗, C∗) admits the representation

X̂π∗

t = lnV t Q− a.s., (26)

where V t satisfies recurrent relation (5) and the consumption C∗
t at any

moment t ∈ N0 admits the representation Q-a.s.
{

∆C∗
t = (γ∗

t ,∆St)−∆X̂π∗
t ≥ 0,

C∗
t |t=0 = 0,

(27)

moreover, the following equalities hold
(a) X̂π∗

t = Xπ∗
t − C∗

t Q-a.s.,

14
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(b)

X̂π∗

t = lnV 0 +
t∑

i=1

(γ∗
i ,∆Si)− C∗

t Q− a.s. (28)

(3) (π∗, C∗) is a perfect superhedging portfolio with consumption, i.e.,

X̂π∗

N = fN (S•) Q− a.s.; (29)

(4) (π∗, C∗) is the minimal perfect superhedging portfolio with
consumption.

R ema r k 5 It is difficult to apply Theorem 10 to calculate the price of an
European option in an incomplete market without transaction costs. Indeed,
it is necessary to solve recurrent relation (9). This implies the problem of
calculating the consumption {C∗

t }t∈N0
.

2.3. Now we are going to consider some useful properties of solution
for problem (2). Let us start with martingale property for the worst-case
measure.

T h e o r e m 11 Suppose the solution of problem (2) exists. Then Q∗ is a
martingale measure.

2.4. In this subsection, we give conditions for the existence of the S-
representation for any bounded contingent claim with respect to the measure
Q∗. These conditions are based on Theorem 4.

T h e o r e m 12 Fix arbitrary FN -measurable bounded contingent claim fN .
Suppose the solution of problem (2) for such fN exists. Then fN admits
representation with respect to the measure Q∗

fN (S•) = EQ∗ [
fN (S•) |FS

0

]
+

N∑
i=1

(γ∗
i ,∆Si) Q∗ − a.s., (30)

where
{
γ∗
t ,FS

t−1

}
t∈N1

is the d-dimensional predictable sequence satisfing (9).

R ema r k 6 (1) It is possible that Q∗ �∈ �N . Thus, the well-known
Lemma 10 of [17] (see p. 611) and Lemma 5.3.9 of [10] don’t imply
Theorem 11. In Section 4, we use Theorems 4 and 6 to prove that the S-
representation exists.

(2) It follows from Corollary 2 and Theorem 12 that for any t ∈ N1,
{

∆ lnV t = (γ∗
t ,∆St)

lnV t|t=0 = lnV 0, lnV t|t=N = fN (S•) Q∗ − a.s.
(31)

15
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The measure Q∗ is a martingale one. Hence formula (31) yields

lnV 0 = EQ∗ [
fN (S•) |FS

0

]
Q∗ − a.s. (32)

(3) Formula (31) implies, that in non-redundant (1, S)-market {γ∗
t }t∈N1

is unique (i.e. if there is {γ̃t}t∈N1 satisfying (31), then γ̃t = γ∗
t Q∗-a.s. for

any t ∈ N1).
(4) For any t ∈ N0, the consumption C∗

t is trivial with respect to the
measure Q∗. Therefore, X̂π∗

t = Xπ∗
t Q∗-a.s. Hence we conclude that the capital

of the portfolio π∗ ∈ SF admits the representation Q∗-a.s.

Xπ∗

t = lnV 0 +
t∑

i=1

(γ∗
i ,∆Si) Q∗ − a.s (33)

at any moment t ∈ N1. Moreover,

Xπ∗

t = EQ∗ [
fN (S•) |FS

t

]
= lnV t Q∗ − a.s. (34)

2.5.

T h e o r e m 13 Suppose {1, S}-market is non-redundant and the solution
of problem (2) exists. Then there is worst-case probability measure such, that
regular conditional probabilities Q∗ (·|FS

n−1

)
, t ∈ N1, are discreet and their

supports consist of d+ 1 affine-independent predictable variables.

R em a r k 7 From Theorem 13 it follows, that in the case of non-redundant
market there exists such worst-case discreet measure Q∗, that there is no
martingale probability measure Q: Q �= Q∗ and Q ∼ Q∗ (another contradicts
to affine-independence of support’s elements). There are two important
consequences: (1) Q∗ �∈ �N ∩MN , thus Q∗ �∈ �N ; (2) Q∗ specifies complete
market.

2.6. It follows from Theorems 11–13 and Remark 10 that the considered
(1, S)-market can be identified with a complete market with respect to Q∗.
This remark leads to the following definition.

D e f i n i t i o n 13 Fix FS
N -measurable bounded contingent claim fN . A non-

redundant (1, S)-market will be called the worst-case complete for fN if there
exist

a worst-case martingale probability measure Q∗, such that conditions
Q ∈ MN and Q ∼ Q∗ imply Q(A) = Q∗(A) for any A ∈ FS

N , and
a portfolio π∗ ∈ SF

such that the following equality holds at the moment N :

Xπ∗

N = fN Q∗ − a.s.

Such a portfolio π∗ is called a minimax hedging portfolio.

16
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Definition 13 and Theorems 10–13 imply the following assertion.

T h e o r e m 14 Suppose the solution of problem (2) exists. Then the worst-
case complete market exists. Moreover, the capital of the minimax hedging
portfolio is equal to the capital of the minimal perfect superhedging portfolio
with Q∗-a.s. trivial consumption

2.7. It follows from Theorem 10 that there exists a minimal perfect
superhedging portfolio with respect to any measure Q ∈ �N . However, this
result does not provide any method for constructing such a portfolio and its
capital. In this subsection, we give a general representation of the minimax
hedging portfolio and of its capital by use of Theorems 11–14.

T h e o r e m 15 Let π∗ ∈ SF be the minimax hedging portfolio. Suppose the
solution of problem (2) exists. Then:

(1) the minimax hedging portfolio π∗ admits the following representation:
(i) for each t ∈ N1, there exists an FS

t−1-measurable d-dimensional γ∗
t

such that
{

V t−1 = ess inf
γ∈Dt

EQ∗ [
V te

−(γ,∆St)|FS
t−1

]
= EQ∗ [

V te
−(γ∗

t ,∆St)|FS
t−1

]
Q∗ − a.s.

V t|t=N = exp {fN (S•)} ;
(35)

(ii) for each t ∈ N1, there exists an FS
t−1-measurable β∗

t such that
{

β∗
t = β∗

t−1 − (γ∗
t , St−1)

β∗
t |t=0 = β∗

0 ,
(36)

where β∗
0 = lnV 0 and γ∗

0 = 0;
(2) for each t ∈ N0, the capital Xπ∗

t of π∗ ∈ SF admits the following
representations Q∗-a.s.:

(a) Xπ∗
t = lnV t,

(b) Xπ∗
t = Xπ∗

0 +
t∑

i=1

(γ∗
i ,∆Si), Xπ∗

N = fN (S•) Q∗-a.s., Xπ∗
0 = lnV 0 =

EQ∗ [
fN (S•) |FS

0

]
.

R ema r k 8 The capital of the minimax hedging portfolio is Xπ∗
0 =

EQ∗ [
fN (S•) |FS

0

]
. The value Xπ∗

0 is the upper bound of the spread for an
European option in an incomplete market.

§3. Proofs of Assertions 1–9

17
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3.1. Here we prove Theorem 1 and Corollary 1. To prove these assertions,
we make some preparatory notes.

3.1.1. Since Q ∈ �N is a measure, it follows from the Radon–Nikodym
theorem that there exists a unique FN -measurable positive random variable

zN such that zN (ω) =
dQ

dP
(ω). The variable zN is called the density of

the measure Q with respect to measure P. Suppose that Qt � Q|Ft and
Pt � P |Ft . Obviously, for any t ∈ N0, the probability measures Qt and Pt

are equivalent. Hence there exists a unique Ft-measurable positive random

variable zt (ω) �
dQt

dPt

(ω) such that:

(i) for any t ∈ N0, 0 < zt < ∞ P -a.s.;
(ii) if Q0 = P0, then zt|t=0 = 1;
(iii) for each t ∈ N1, EP(zt|Ft−1) = zt−1 P-a.s. The variable zt (ω) is a

local density.
For any t ∈ N0, we let Z

N

t denote the set of sequences
{
zt,Ns ,FS

s

}
s∈N0

such that

zt,Ns �

{
1, 0 ≤ s ≤ t,
zs
zt
, t < s ≤ N. . (37)

Let us denote zNt �
{
zt,Ns

}
s=N

.
It is clear that the sequence

{
zt,Ns

}
s∈N0

is a martingale with respect to
the measure P and the filtration

{
FS

s

}
s∈N0

.

The family of sets
{
Z

N

t

}
t∈N0

has the following properties (see [17]):

(1) Z
N

t ⊆ Z
N

t−1 ⊆ · · · ⊆ Z
N

0 ;
(2) for each t ∈ N0, a set Z

N

t is convex.
The reduction of the set ZN

0 to {t1, . . . , t2}, where t1 < t2 and t1, t2 ∈ N0,
is denoted by Z

t2
t1
, and its elements are denoted by zt2t1 .

3.1.2. Consider the estimate of an admissible t-bistrategy
(
Q, γN

t+1

)
. It

follows from the law of iterated expectations that I
Q,γN

t+1

t (St
0) satisfies the

recurrent relation Q-a.s.



I
Q,γN

t+1

t (St
0) = EQ

[
I
Q,γN

t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
,

I
Q,γN

t+1

t (St
0) |t=N = exp {fN (S•)} .

(38)

As we know, Q, P ∈ �N . Therefore, it follows from the definition of the
estimate of an admissible t-bistrategy

(
Q, γN

t+1

)
(denoted by I

Q,γN
t+1

t (St
0)) and

18
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Girsanov’s theorem [18] that Q (P)-a.s.

I
Q,γN

t+1

t

(
St
0

)
= EP

[
zNt exp

{
fN (S•)−

N∑
i=t+1

(γi,∆Si)

}
|FS

t

]
. (39)

Let us also denote the right-hand side of equality (39) by I
P,zNt ,γN

t+1

t (St
0), where(

zNt , γ
N
t+1

)
∈ Z

N

t × DN
t+1. It follows from (38) and (39) that for any t ∈ N0

and
(
zNt , γ

N
t+1

)
∈ Z

N

t ×DN
t+1, the random variable I

P,zNt ,γN
t+1

t (St
0) satisfies the

recurrent relation P-a.s.

I
P,zNt ,γN

t+1

t

(
St
0

)
= EP

[
zt,Nt+1I

P,zNt+1,γ
N
t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
. (40)

For any t ∈ N0, we have IQ,γN
t+1

t (St
0) = I

P,zNt ,γN
t+1

t (St
0) P-a.s. Hence the random

variable V t admits the representation

V t = ess inf
γN
t+1∈DN

t+1

ess sup
zNt ∈ZN

t

I
P,zNt ,γN

t+1

t

(
St
0

)
P−a.s. (41)

3.1.3. Proof o f Theor em 1. First we prove that for any t ∈ N0,
the following inequality holds P-a.s.:

V t ≥ ess inf
γ∈Dt+1

ess sup
Q∈�N

EQ
[
V t+1e

−(γ,∆St+1)|FS
t

]
. (42)

By definition,
I
P,γN

t+1

t

(
St
0

)
� ess sup

zNt ∈ZN
t

I
P,zNt ,γN

t+1

t

(
St
0

)
. (43)

It follows from the definition of essential supremum that I
P,γN

t+1

t (St
0) is an

FS
t -measurable variable. The I

P,zNt ,γN
t+1

t (St
0) satisfies recurrent relation (40).

Hence the properties of essential supremum and Girsanov’s theorem imply
the formulas P-a.s.

I
P,γN

t+1

t

(
St
0

)
= ess sup

zNt ∈ZN
t

EP
[
zt,Nt+1I

P,zNt+1,γ
N
t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
≥

≥ ess sup
zNt+1∈Z

N
t+1

EP
[
zt,Nt+1I

P,zNt+1,γ
N
t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
=

= EP


zt,Nt+1 ess sup

zNt+1∈Z
N
t+1

I
P,zNt+1,γ

N
t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t


 =

= EP
[
zt,Nt+1I

P,γN
t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
= (44)
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= EQ
[
I
P,γN

t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
.

Note that the left-hand side of (44) does not depend on the measure Q.
Hence, it follows from (44) that P-a.s.

I
P,γN

t+1

t

(
St
0

)
≥ ess sup

Q∈�N

EQ
[
I
P,γN

t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
.

This inequality can be sharpened as follows:

I
P,γN

t+1

t

(
St
0

)
≥ ess sup

Q∈�N

EQ

[
ess inf

γN
t+2∈DN

t+2

I
P,γN

t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
≥ (45)

≥ ess inf
γt+1∈Dt+1

ess sup
Q∈�N

EQ

[
ess inf

γN
t+2∈DN

t+2

I
P,γN

t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
. P−a.s.

Applying the formula V t+1 = ess inf
γN
t+2∈DN

t+2

I
P,γN

t+2

t+1

(
St+1
0

)
to inequality (45), we

obtain P-a.s.

I
P,γN

t+1

t

(
St
0

)
≥ ess inf

γt+1∈Dt+1

ess sup
Q∈�N

EQ
[
V t+1e

−(γt+1,∆St+1)|FS
t

]
. (46)

The right-hand side of (46) does not depend on γt+1 ∈ Dt+1. So (46) imply
(42).

Now let us show that for any t ∈ N0, the following inequality holds P-a.s.:

V t ≤ ess inf
γ∈Dt+1

ess sup
Q∈�N

EQ
[
V t+1e

−(γ,∆St+1)|FS
t

]
. (47)

Since I
P,zNt+1,γ

N
t+2

t+1

(
St+1
0

)
≤ I

P,γN
t+2

t+1

(
St+1
0

)
P-a.s., it follows from Girsanov’s

theorem that for any γN
t+1 ∈ DN

t+1 the inequalities hold P-a.s.

I
P,zNt ,γN

t+1

t

(
St
0

)
≤ EQ

[
I
P,γN

t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
≤ (48)

≤ ess sup
Q∈�N

EQ
[
I
P,γN

t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
.

The right-hand side of (48) does not depend on Q. This implies that for any
γN
t+1 ∈ DN

t+1, the following inequality holds P-a.s.:

I
P,γN

t+1

t

(
St
0

)
≤ ess sup

Q∈�N

EQ
[
I
P,γN

t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
. (49)
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Note that: (1) for any γN
t+1 ∈ DN

t+1, we have V t ≤ I
P,γN

t+1

t (St
0) P-a.s.; (2) it

follows from the definition of essential infimum that for any ε > 0, there exists
γε,N
t+1 � {γε

s}s∈{t+1,...,N} ∈ DN
t+1, where γε

s is an FS
s−1-measurable d-dimensional

vector γε,N
t+1 (which depends on ε) such that for any t ∈ N0,

V t ≥ I
P,γε,N

t+1

t

(
St
0

)
− ε P−a.s.

Thus (49) can be rewritten as

V t ≤ I
P,γε,N

t+1

t

(
St
0

)
≤ ess sup

Q∈�N

EQ

[
I
P,γε,N

t+2

t+1

(
St+1
0

)
e−(γt+1,∆St+1)|FS

t

]
≤

≤ ess sup
Q∈�N

EQ
[(
V t+1 + ε

)
e−(γt+1,∆St+1)|FS

t

]
≤

≤ ess sup
Q∈�N

EQ
[
V t+1e

−(γt+1,∆St+1)|FS
t

]
+

+ε ess sup
Q∈�N

EQ
[
e−(γt+1,∆St+1)|FS

t

]
. (50)

We consider the second term in the left-hand side of (50). As γt+1 ∈ Dt+1,
we have for any t ∈ N1,

0 ≤ ess sup
Q∈�N

EQ
[
e−(γt+1,∆St+1)|FS

t

]
< ∞.

The constant ε > 0 is arbitrary. Hence the following inequality holds for any
γt+1 ∈ Dt+1 and t ∈ N1:

V t ≤ ess sup
Q∈�N

EQ
[
V t+1e

−(γt+1,∆St+1)|FS
t

]
. (51)

As the left-hand side of (51) does not depend on γt+1 ∈ Dt+1, we obtain (47).
Inequalities (42), (47) imply recurrent relation (5). Obviously, V t|t=N =

efN (S•). This completes the proof of the theorem.
3.1.4. Proof o f Coro l l ary 1. (1) For any Q ∈ �N , we have

ess sup
Q∈�N

EQ
[
V te

−(γ,∆St)|FS
t−1

]
≥ EQ

[
V te

−(γ,∆St)|FS
t−1

]
P−a.s.

Therefore for any t ∈ N0, γ ∈ Dt and Q ∈ �N , the following inequality holds

ess inf
γ∈Dt

ess sup
Q∈�N

EQ
[
V te

−(γ,∆St)|FS
t−1

]
≥ ess inf

γ∈Dt

EQ
[
V te

−(γ,∆St)|FS
t−1

]
. P−a.s.

The combination of (5) and of the last inequality implies (6).

21



26	 Oleg Zverev, Vladimir Khametov, Elena Shelemekh

(2) The second inequality immediately follows from (5) and the definition
of essential supremum. This completes the proof of the corollary.

3.2. Proof o f Theor em 2. Let us prove that for any t ∈ N1, we
have

V t ≤ ec2 P−a.s. (52)

We proceed by induction. It obviously follows from the conditions of
Theorem 2 that

V t|t=N ≤ ec2 .

To prove (52) it is necessary to show that if V t ≤ ec2 , then V t−1 ≤ ec2 for
any t ∈ N1. Suppose that V t ≤ ec2 . It follows from Corollary 1 that for any
γ ∈ Dt we have P-a.s.

V t−1 = ess inf
γ∈Dt

ess sup
Q∈�N

EQ
[
V te

−(γ,∆St)|FS
t−1

]
≤

≤ ess sup
Q∈�N

EQ
[
V te

−(γ,∆St)|FS
t−1

]
.

We can sharpen the last inequality because 0 ∈ Dt. We have P-a.s.

V t−1 ≤ ess sup
Q∈�N

EQ
[
V t|FS

t−1

]
≤ ec2 .

So, the main step of induction is proved, i.e., it is proved that (52) is true
for any t ∈ N1.

Now let us show that for any t ∈ N1,

V t ≥ e−c2 P−a.s. (53)

We again proceed by induction, and it obviously follows from the conditions
of the theorem that

V t|t=N ≥ e−c2 P−a.s.

Hence it is necessary to prove that if V t ≥ e−c2 , then V t−1 ≥ e−c2 for any
t ∈ N1. Suppose that V t ≥ e−c2 . It follows from Corollary 1 that P-a.s.

V t−1 = ess inf
γ∈Dt

ess sup
Q∈�N

EQ
[
V te

−(γ,∆St)|FS
t−1

]
≥

≥ ess inf
γ∈Dt

EQ
[
V te

−(γ,∆St)|FS
t−1

]
≥ ess inf

γ∈Dt

EQ
[
e−c2e−(γ,∆St)|FS

t−1

]
=

= e−c2ess inf
γ∈Dt

EQ
[
e−(γ,∆St)|FS

t−1

]
. (54)

We shall need the following notation. Let

GQ

(
t, St−1

0 ,−γ
)
� lnEQ

[
exp {− (γ,∆St)} |FS

t−1

]
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for any t ∈ N1, γ ∈ Rd, and Q ∈ �N . GQ

(
t, St−1

0 ,−γ
)

is called the cumulant
of a random variable ∆St with respect to a probability measure Q and the
σ-algebra Ft−1 (see [17], [18]).

Thence (54) can be rewritten as P-a.s.

V t−1 ≥ e−c2ess inf
γ∈Dt

EQ
[
e−(γ,∆St)|FS

t−1

]
= e−c2ess inf

γ∈Dt

eGQ(t,St−1
0 ,−γ), (55)

where Q ∈ �N is arbitrary.
According to the conditions of the theorem, we have �N ∩MN �= ∅. So

there exists a measure Q̃ ∈ �N ∩MN such that for any γ ∈ Dt the cumulant
satisfies the condition GQ̃

(
t, St−1

0 ,−γ
)
≥ 0 and is a convex function of γ.

Hence it follows from (55) that

V t−1 ≥ e−c2 P−a.s.

Consequently, the main step of induction is proved. Also, (53) is proved for
any t ∈ N1. Thus the proof of item 2 of the lemma follows from (53) and
(54). The proof is complete.

3.3. To prove Theorem 3 we shall need two auxiliary assertions.
3.3.1.

L e mm a 1 Suppose the following conditions are satisfied:
(1) Q ∈ �N ∩MN ;
(2) {St}0≤t≤N is a sequence of d-dimensional variables, where for any

t ∈ N1 variables ∆S
(i)
n are linearly independent, i = 1, d;

(3) γt is a nontrivial bounded d-dimensional vector.
Then it is Q-a.s. true that

Q
(
(γt,∆St) > 0|FS

t−1

)
> 0, Q

(
(γt,∆St) < 0|FS

t−1

)
> 0. (56)

Proof o f Lemma 1. According to conditions of the Lemma
the measure Q is a martingale one. Therefore for any γ′

t ∈ Rd we
have inequality 1 ≤ exp

{
GQ

(
t, St−1

0 ,−γ′
t

)}
= EQ

[
e−(γ′

t,∆St)|Ft−1

]
Q-a.s.,

where GQ

(
t, St−1

0 ,−γ′
t

)
is a cumulant with respect to the measure Q. A

cumulant GQ is a convex eigenfunction. So, there exists γt ∈ Rd such that
exp

{
GQ

(
t, St−1

0 ,−γt
)}

> 1 Q-a.s.
Note that Q-a.s.

e−(γt,∆St) = e−(γt,∆St)
[
1{(γt,∆St)<0} + 1{(γt,∆St)≥0}

]
≤

≤ e−(γt,∆St)1{(γt,∆St)<0} + 1.

Thus, 1 < EQ
[
1 + e−(γt,∆St)1{(γt,∆St)<0}|Ft−1

]
Q-a.s., which can be rewritten

as follows Q-a.s.

0 < EQ
[
e−(γt,∆St)1{(γt,∆St)<0}|Ft−1

]
. (57)
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Let us define Q̃(A) � EQ1A(ω) exp

{
N∑
i=1

[
−(γi,∆Si)−GQ

(
i, Si−1

0 ,−γi
)]}

,

where A ∈ FS
N is arbitrary. Obviously, Q̃ ∼ Q. Then due to Girsanov’s

theorem inequality (57) takes the form Q-a.s.

0 < exp
{
GQ

(
t, St−1

0 ,−γt
)}

EQ̃
[
1{(γt,∆St)<0}|Ft−1

]
=

= exp
{
GQ

(
t, St−1

0 ,−γt
)}

Q̃ [(γt,∆St) < 0|Ft−1] .

It means that 0 < Q̃ [(γt,∆St) < 0|Ft−1] Q-a.s. As measures Q and Q̃ are
equivalent, we have 0 < Q [(γt,∆St) < 0|Ft−1] Q-a.s.

The same reasoning proves, that 0 < Q [(γt,∆St) > 0|Ft−1] Q-a.s. The
proof is complete.

3.3.2.

R em a r k 9 (1) Condition (2) of Lemma 1 is not a crucial one. Indeed,
suppose that for some moment t′ ∈ N1 variables ∆S

(i)
t′ , i = 1, d, are not

independent and conditional probability Q
(
(γ̄t′ ,∆St′) = 0|FS

t′−1

)
= 1 Q-a.s.

As γ̄t′ is arbitrary, we have ∆St′ = 0 Q-a.s. Obviously, the last equality means
that FS

t′ = FS
t′−1 and V t′ = V t′−1 Q-a.s. Hence moment t′ might be skipped.

(2) Suppose the assumptions of Lemma 1 are satisfied and γ̄t �
γt
|γt|

, where γt is a nontrivial bounded d-dimensional predictable vector.

Then any Q ∈ �N ∩ MN has regular version of conditional distribution
Q
(
(γ̄t,∆St) ≤ x|FS

t−1

)
. This and (56) means that for any t ∈ N1 there are

positive constants c3 and c4 such that Q-a.s.

Q
(
−(γt,∆St) ≥ c3|γt|

∣∣FS
t−1

)
≥ c4 > 0. (58)

3.3.3. Let us denote

Φ(t, γ, ω) � ess sup
Q∈�N

EQ
[
V te

−(γ,∆St)|FS
t−1

]
, (59)

where t ∈ N1, γ ∈ Dt are arbitrary.

L e m m a 2 Suppose the assumptions of Theorem 2 are satisfied. Then for
any t ∈ N1 the following assertions are true:

(1) there are positive constants c3 and c4 such that Q-a.s.

Φ(t, γ, ω) ≥ c3e
c4|γ|−c2 ; (60)

(2) there is version of the function Φ(t, γ, ω) such that for any ω ∈ Ω this
version is convex continuous function of γ.
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Proof o f L emma 2. (1) From (59), Corollary 1 and Theorem 2 it
follows that for any γ ∈ Dt+1 and Q ∈ �N ∩MN the following inequalities
hold Q-a.s.

Φ(t, γ, ω) ≥ EQ
[
V t+1e

−(γ,∆St+1)|FS
t

]
≥ e−c2EQ

[
e−(γ,∆St+1)|FS

t

]
≥

≥ e−c2EQ
[
e−(γ,∆St+1)1{−(γ,∆St+1)≥c3|γ|}|FS

t

]
≥

≥ ec3|γ|−c2Q
(
−(γ,∆St+1) ≥ c3|γ|

∣∣FS
t

)
.

(61)

Inequality (60) follows from (61) and (58) (see Remark 9).
(2) From (59), Corollary 1, Theorem 2, properties of essential supremum

and because e−(γ,x) is convex it follows that for any t ∈ N1 the following
inequality is true P-a.s.

Φ(t, γα, ω) ≤ αΦ(t, γ1, ω) + (1− α)Φ(t, γ2, ω), (62)

where α ∈ [0, 1], γα � αγ1 + (1− α)γ2, γ1, γ2 ∈ Dt.
Obviously, Φ(t, γ, ω) is B(Rd) ⊗ FS

t -measurable random variable and is
finite P-a.s. for any γ ∈ Dt.

Let us denote: (i) Lt
∞ � Lt

∞
(
Rdt,B

(
Rdt

)
, P

)
is normed space of P-a.s.

finite random variables;
(ii) L∞

t � L∞
t

(
Rdt,B

(
Rdt

))
is normed space of measurable functions with

uniform norm.
Suppose reflection ρt : L

t
∞ → L∞

t is lifting [15], i.e. if ϕt ∈ Lt
∞ then:

(i) ρt(ϕt) = ϕt P-a.s.;
(ii) if ϕt(ω) = 0 P-a.s. then for any ω we have ρt

(
ϕt(ω)

)
= 0;

(iii) ρ
(
1{Rdt}(ω)

)
= 1{Rdt}(ω).

It is well known [15] that: (i) in this case lifting exists, (ii) ||ρt|| = 1 and
ρ2t = ρt.

Obviously, for any t ∈ N1 and γ ∈ Dt we have Φ(t, γ, ω) ∈ Lt
∞ and

ρt (Φ(t, γ, ω)) ∈ L∞
t . So, from (60) it follows that for any (t, ω) function

ρt (Φ(t, γ, ω)) is convex non-negative function of γ. Consequently, for any
(t, ω) it is continuous function of γ. The proof is complete.

3.3.4. Proof o f Theor em 3. From (58) (see Remark 9) and
Lemma 2 it follows that:

(1) for each t and ω function Φ(t, γ, ω) is a B
(
Rd

)
-measurable function

of γ and
lim

|γ|→∞
Φ(t, γ, ω) = ∞ P -a.s.; (63)

(2) for each t and γ function Φ(t, γ, ω) is FS
t -measurable.

Note that from definition of essential infimum, Theorems 1, 2 and
definition of the sequence {Φ(t, γ, ω)}t∈N1

it follows that there is minimizing
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sequence {γ(k)
t+1}k≥1 such that P-a.s.

e−c2 ≤ V t = ess inf
γt+1∈Dt+1

ess sup
Q∈�N

EQ
[
V t+1e

−(γt+1,∆St+1)|FS
t

]
=

= lim
k→∞

ess sup
Q∈�N

EQ

[
V t+1e

−
(
γ
(k)
t+1,∆St+1

)
|FS

t

]
≤ ec2 .

(64)

We will prove Theorem 3 by contradiction. According to (64) this means
that there is no FS

t -measurable finite d-dimensional vector γ∗
t+1 such that (9)

is true. Consequently,
lim
k→∞

|γ(k)
t+1| = ∞. (65)

Taking into account (64) and (63) we get P-a.s.

ec2 ≥ V t = lim
k→∞

ess sup
Q∈�N

EQ

[
V t+1e

−
(
γ
(k)
t+1,∆St+1

)
|FS

t

]
=

= lim
k→∞

Φ(t, γ
(k)
t+1, ω) ≥ lim

k→∞
c4e

c3|γ(k)
t+1|−c2 = ∞.

(66)

It is a contradiction, which means that our assumption (65) is wrong.
That is why from {γ(k)

t+1}k≥1 it is possible to pick out converging subsequence
{γ(kl)

t+1}l≥1 such that
γ∗
t+1 � lim

l→∞
γ
(kl)
t+1 . (67)

Obviously, γ∗
t+1 is a FS

t -measurable d-dimensional vector. Indeed, suppose
B ⊆ Rd is an open sphere. For any t and ω it is true that Φ(t, γ, ω) is
continuous function of γ. So, we have

{γ∗
t ∈ B} =

⋃
q∈Qd∩B

⋂
q′∈Qd\B

{Φ(t, q, ω) < Φ(t, q′, ω)} ,

where Qd is a space of d-dimensional vectors whose components are rational
numbers.

Let us prove that γ∗
t+1 ∈ Dt+1. From Corollary 1, Theorem 2, Lemma 2

and the Fatou Lemma it follows that P-a.s.

ec2 ≥ V t ≥ lim
l→∞

EQ

[
V t+1e

−
(
γ
(kl)
t+1 ,∆St+1

)
|FS

t

]
≥

≥ EQ
[
V t+1e

−(γ∗
t+1,∆St+1)|FS

t

]
≥ e−c2EQ

[
e−(γ

∗
t+1,∆St+1)|FS

t

]
.

From these inequalities it immediately follows that
e2c2 ≥ ess sup

Q∈�N

EQ
[
e−(γ

∗
t+1,∆St+1)|FS

t

]
. The proof is complete.
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3.4. Proof o f Theor em 4. From Theorem 3 we obtain formula
(10) for any t ∈ N1 and Q ∈ �N . The measures Q and P are equivalent.
Therefore, recalling the remarks of Subsection 3.1.1 and using Girsanov’s
theorem, we rewrite (10) as P -a.s.

V t−1 ≥ EQ
[
V te

−(γ∗
t ,∆St)|FS

t−1

]
= EP

[
zt
zt−1

V te
−(γ∗

t ,∆St)|FS
t−1

]
, (68)

where zt =
dQt

dPt

(ω).

Let {gt}t∈N1
be a sequence of random variables such that gt is an

arbitrary FS
t -measurable bounded random variable and

{
zt,FS

t

}
t∈N0

admits
the representation

zt = zt−1
gt

EP
(
gt|FS

t−1

) , zt|t=0 = 1. (69)

Obviously, {zt}t∈N0
∈ Z

N

0 and for any t ∈ N0, the random variable zt is
FS

t -measurable and 0 < zt < ∞ P-a.s. Therefore, combining (68) with (69),
we obtain

V t−1E
P
[
gt|FS

t−1

]
≥ EP

[
gtV te

−(γ∗
t ,∆St)|FS

t−1

]
P−a.s.

Hence, we have

0 ≥ EP

[
gt

(
V t

V t−1

e−(γ∗
t ,∆St) − 1

)
|FS

t−1

]
P−a.s. (70)

Since

exp
{
∆ lnV t − (γ∗

t ,∆St)
}
− 1−

[
∆ lnV t − (γ∗

t ,∆St)
]
≥ 0 P−a.s.,

from (70) we obtain the inequalities P-a.s.

0 ≥ EP
{
gt

[
e∆lnV t−(γ∗

t ,∆St) − 1−
(
∆ lnV t − (γ∗

t ,∆St)
)
+∆ lnV t−

− (γ∗
t ,∆St)] |FS

t−1

}
≥ EP

{
gt
[
∆ lnV t − (γ∗

t ,∆St)
]
|FS

t−1

}
.

Since gt is arbitrary, we have P-a.s.

−∆C∗
t � ∆ lnV t − (γ∗

t ,∆St) ≤ 0. (71)

It follows from (71) that the FS
t -measurable random variable ∆C∗

t defined
by (11) exists for any t ∈ N1. It follows from (71) that for any t ∈ N1, we

27



32	 Oleg Zverev, Vladimir Khametov, Elena Shelemekh

have ∆C∗
t ≥ 0 P-a.s. Hence, C∗

t ≥ C∗
s P-a.s. for any t ≥ s. It follows from

(11) and our remark that P-a.s.

C∗
N =

N∑
i=1

∆C∗
i =

N∑
i=1

[
(γ∗

i ,∆Si)−∆ lnV i

]
= (72)

=
N∑
i=1

(γ∗
i ,∆Si)− lnV N + lnV 0.

As lnV N = fN (S•) from the last equality we obtain (12). This completes
the proof of the theorem.

3.5. Proof o f Theor em 5. According to theorem’s conditions ξ
is P-a.s. bounded, so for any Q ∈ RN expectation EQξ is also bounded,
consequently, sup

Q∈RN

EQξ is finite. Thus there is sequence {Qk}k≥1 with Qk ∈

RN for any k ≥ 1 such, that sup
Q∈RN

EQξ = lim
k→∞

EQkξ.

For any A ∈ F let us define λ(A) �
∞∑
i=1

Qk(A)
2i

. Obviously, λ is a probability

measure and Qk � λ for any k ≥ 1. Hence for any k ≥ 1 there exists random
variable 0 ≤ Xk �

dQk

dλ
called density of Qk with respect to λ, EλXk = 1 [18].

Then EQkξ = EλXkξ, k ≥ 1.
Suppose {Xk}k≥1 is weakly relatively compact in L1 (Ω,F , λ). In that

case the theorem of Eberlein-Smulian [3] guarantees existence of subsequence
{Xkm}m≥1 with weak limit in topology of L1 (Ω,F , λ), i.e. there exists X ∈
L1 (Ω,F , λ) such, that for any Y ∈ L∞(Ω,F , λ):

lim
m→∞

EλXkmY = EλXY. (73)

We define Q∗(A) � EλX1{A}, A ∈ F . Equality (73) holds true for P-a.s.
bounded ξ, that is why

lim
m→∞

EλXkmξ = EλXξ = EQ∗
ξ = lim

m→∞
EQkmξ. (74)

As
{
EQkξ

}
k≥1

has a limit, so
{
EQkmξ

}
m≥1

has the same limit. Thus we have

sup
Q∈RN

EQξ = lim
k→∞

EQkξ = lim
m→∞

EQkmξ = EQ∗
ξ. (75)

The proof is complete.
3.6. In this subsection, we prove Theorem 6.
3.6.1. To prove Theorem 6, we need the following lemma.
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L e mm a 3 Suppose that the assumptions of Theorem 4 are satisfied. Then
the following assertions are true:

(1)

0 ≤ exp

{
fN (S•)−

N∑
i=1

(γ∗
i ,∆Si)

}
≤ ec2 P−a.s.; (76)

(2) for any t ∈ N1,

0 ≤ V te
−(γ∗

t ,∆St) ≤ ec2 P−a.s.; (77)

Proof o f L emma 3. (1) We first prove (76). From (12) we obtain

V 0e
−C∗

N = exp

{
fN (S•)−

N∑
i=1

(γ∗
i ,∆Si)

}
Q− a.s. (78)

As e−c2 ≤ V 0 ≤ ec2 and C∗
N ≥ 0 Q-a.s., (76) follows from (78).

(2) Let us prove inequality (77). The left inequality in (77) is obvious.
So we have to prove right inequality in (77). From (11) it follows that
V t

V t−1
e−(γ∗

t ,∆St)+∆C∗
t = 1 Q-a.s. for any t ∈ N1 and Q ∈ �N . We know that

∆C∗
t ≥ 0 Q-a.s. So, from the last equality it follows that V te

−(γ∗
t ,∆St) ≤ V t−1

Q-a.s. That is why from Theorem 2 the right inequality in (77) follows. The
proof is complete.

3.6.2. Proof o f Theor em 6. Now let us prove equality (14). Let

ξt (ω) = ηt−1V te
−(γ∗

t ,∆St),

where ηt−1 is an FS
t−1-measurable bounded random variable,

(
V t,FS

t

)
t∈N0

satisfies recurrent relation (5) and
(
γ∗
t ,FS

t−1

)
t∈N1

is defined by (9). It follows
from the second assertion of Lemma 3 that for any t ∈ N1, the V t

and V te
−(γ∗

t ,∆St) are FS
t measurable bounded random variables. Consider

sup
Q∈�N

EQηt−1V te
−(γ∗

t ,∆St). On the one hand, the properties of the essential

supremum and the conditional expectation EQ
[
•|FS

t−1

]
and also Theorem 3

imply that

sup
Q∈�N

EQηt−1V te
−(γ∗

t ,∆St) = sup
Q∈�N

EQηt−1E
Q
[
V te

−(γ∗
t ,∆St)|FS

t−1

]
=

= sup
Q∈�N

EQηt−1 ess sup
Q∈�N

EQ
[
V te

−(γ∗
t ,∆St)|FS

t−1

]
= sup

Q∈�N

EQηt−1V t−1. (79)

Further, taking (75) into account, we obtain the following equalities

sup
Q∈�N

EQηt−1V t−1 = EQ∗
ηt−1V t−1, (80)
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sup
Q∈�N

EQηt−1 ess sup
Q∈�N

EQ
[
V te

−(γ∗
t ,∆St)|FS

t−1

]
= (81)

= EQ∗
{
ηt−1 ess sup

Q∈�N

EQ
[
V te

−(γ∗
t ,∆St)|FS

t−1

]}
.

Since the random variable ηt−1 is arbitrary, it follows from (79), (80), and
(81) that for any t ∈ N1,

V t−1 = ess sup
Q∈�N

EQ
[
V te

−(γ∗
t ,∆St)|FS

t−1

]
Q∗ − a.s. (82)

On the other hand, (74)–(75) and the properties of the conditional
expectation imply the equalities

sup
Q∈�N

EQηt−1V te
−(γ∗

t ,∆St) = lim
n→∞

EQ(n)

ηt−1V te
−(γ∗

t ,∆St) =

= lim
n→∞

Eληt−1V te
−(γ∗

t ,∆St)
dQ(n)

dλ
(ω) =

= Eληt−1V te
−(γ∗

t ,∆St)χ (ω) = EQ∗
ηt−1V te

−(γ∗
t ,∆St) = (83)

= EQ∗
ηt−1E

Q∗ [
V te

−(γ∗
t ,∆St)|FS

t−1

]
.

Using (79), (80) and (83), we obtain

EQ∗
ηt−1V t−1 = EQ∗

ηt−1E
Q∗ [

V te
−(γ∗

t ,∆St)|FS
t−1

]
. (84)

As ηt−1 is arbitrary, taking (84) into account, we obtain, for any t ∈ N1,

V t−1 = EQ∗ [
V te

−(γ∗
t ,∆St)|FS

t−1

]
Q∗ − a.s. (85)

Obviously, V t|t=N = exp{fN (S•)}. This and recurrent relation (85) imply
equality for any t ∈ N1

V t = EQ∗
[
exp

{
fN (S•)−

N∑
i=t+1

(γ∗
i ,∆Si)

}
|FS

t

]
= I

Q∗,γ∗N
t+1

t (St
0) Q∗ − a.s.

Thus, equality (3) is proved. So, there are the worst-case measure Q∗ and
the minimax strategy {γ∗

t }t∈N1 , i.e. there exists the minimax bistrategy
(Q∗, γ∗N

1 ). The proof is complete.
3.7. Proof o f Coro l l ary 2. For convenience of presentation let

us denote Gt �
{
ω ∈ Ω : � lnV t(ω) = (γ∗

t ,�St)(ω)−�C∗
t (ω)

}
. Obviously,

Gt is a FS
t -measurable set. From the proof of Theorem 5 it follows that there

are sequence {Q(n)}n≥1, Q(n) ∈ �N , and probability measure Q∗ such that
for any A ∈ FS

N we have Q∗(A) = lim
n→∞

Q(n)(A). According to Theorem 4
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Q(n)(Gt) = 1 for any n ≥ 1. Hence Q∗(Gt) = lim
n→∞

Q(n)(Gt) = 1. The proof is
complete.

3.8. Proof o f Theor em 7. (1) Suppose that assertion (1) holds.
Let us prove assertion (2). Let Q∗ be the worst-case probability distribution.
We must prove equality (14). Let us assume the converse, i.e., suppose that
there is t ∈ N1 such that the following inequality holds:

Q∗ {V t−1 > EQ∗ [
V te

−(γ∗
t ,∆St)|FS

t−1

]}
> 0.

Therefore, V t > I
Q∗,γ∗N

t+1

t (St
0). This means that Q∗ is not the worst-case

measure. This contradiction proves the assertion.
(2) Suppose that assertion (2) holds. Let us prove assertion (3). Let us

multiply both sides of (14) by exp

{
−

t−1∑
i=1

(γ∗
i ,∆Si)

}
. Taking the definition

of the sequence
{
µt,FS

t

}
t∈N0

into account and using the properties of the
conditional expectations, we conclude that

µt−1 = V t−1 exp

{
−

t−1∑
i=1

(γ∗
i ,∆Si)

}
=

= EQ∗

[
V t exp

{
−

t∑
i=1

(γ∗
i ,∆Si)

}
|FS

t−1

]
= EQ∗ [

µt|FS
t−1

]
Q− a.s.

It follows from Lemma 3 and Theorem 3 that EQ∗
µt < ∞. Hence, the sequence{

µt,FS
t

}
t∈N0

is a martingale with respect to Q∗.
(3) Suppose that (3) holds. Let us prove (1). It follows from the definition

of the S-estimating sequence
{
µt,FS

t

}
t∈N0

and the assumptions of the
theorem that Q∗-a.s.

(a) µN = exp

{
fN (S•)−

N∑
i=1

(γ∗
i ,∆Si)

}
;

(b) µ0 = V 0 = ess inf
γN
1 ∈DN

1

ess sup
Q∈�N

I
Q,γN

1
0 (S0);

(c)
{
µt,FS

t

}
t∈N0

is a martingale with respect to Q∗.
Therefore, we have (14) which implies

V t = I
Q∗,γ∗N

t+1

t

(
St
0

)
Q∗ − a.s. (86)

By Remark 4 for any t ∈ N0 and for any measure Q ∈ �N , we have

µt ≥ EQ
[
µt+1|FS

t

]
Q− a.s. (87)
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Hence, it follows from (10), (86), (87), Remark 1 and recurrent relation (38)
that for any t ∈ N0 and Q ∈ �N , we have

I
Q∗,γ∗N

t+1

t

(
St
0

)
= V t ≥ EQ

[
V t+1e

−(γ∗
t+1,∆St+1)|FS

t

]
≥

≥ EQ
[
I
Q,γ∗N

t+2

t+1

(
St+1
0

)
e−(γ

∗
t+1,∆St+1)|FS

t

]
= I

Q,γ∗N
t+1

t

(
St
0

)
Q∗ − a.s.

Thus, the Q∗ is the worst-case measure. This completes the proof of
Theorem 7.

3.9. Proof o f Theor em 8. The proof follows from the
Assertions 1–7.

§4. Proofs of Theorems 13–20

4.1. In this subsection, we prove Theorem 10, which establishes the
relationship between problem (2) and the problem of an European option
pricing in an incomplete

(
1, S(1), . . . , S(d)

)
-market.

4.1.1. Proof o f Theorem 10. It follows from Theorem 3 that
there is a strategy {γ∗

t }t∈N1
∈ DN

1 satisfying (9). Therefore, by (18), for each
t ∈ N1, there is a predictable sequence {β∗

t }t∈N0
such that

∆β∗
t = − (St−1,∆γ∗

t ) , β∗
t |t=0 = β∗

0 . (88)

The value of β∗
0 will be found later. So, we have just constructed a self-

financing portfolio π∗ = (β∗
t , γ

∗
t )t∈N0

. Therefore, according to (17), for any
t ∈ N0, the capital Xπ∗

t of the portfolio π∗ is defined by the formula

Xπ∗

t = β∗
t + (γ∗

t , St) . (89)

Hence, for any t ∈ N1, the following equality holds Q-a.s.:

∆Xπ∗

t � Xπ∗

t −Xπ∗

t−1 = ∆β∗
t +∆(γ∗

t , St) . (90)

Combining (90) with (88), we obtain

∆Xπ∗

t � (γ∗
t ,∆St) Q− a.s. (91)

Theorem 4 (see (11)) yields that for each t ∈ N1,

(γ∗
t ,∆St) = ∆ lnV t +∆C∗

t Q− a.s., (92)

where (C∗
t ,Ft)t∈N0

is such that
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(i) C∗
0 = 0;

(ii) for each t ∈ N0 and Q ∈ �N , the inequality ∆C∗
t ≥ 0 holds Q-a.s.

Combining (91) with (92), we obtain

∆
(
Xπ∗

t − lnV t − C∗
t

)
= 0 Q− a.s.

The last equality yields for any t ∈ N0,

Xπ∗

t − lnV t − C∗
t = Xπ∗

0 − lnV 0 − C∗
0 Q− a.s. (93)

Let
Xπ∗

0 = lnV 0 Q− a.s. (94)

Then, it follows from (93), (94) and equality C∗
0 = 0 that for any t ∈ N0 and

Q ∈ �N ,
Xπ∗

t − C∗
t = lnV t Q− a.s. (95)

Since
(
C∗

t ,FS
t

)
t∈N0

is a nondecreasing sequence such that C∗
0 = 0, it follows

from (19) that X̂π∗
t = Xπ∗

t − C∗
t is the capital of the self-financing portfolio

π∗ with consumption C∗
t at time t ∈ N0. Also, from (95) we conclude that

X̂π∗
t = lnV t is the capital of the self-financing portfolio with consumption

(π∗, C∗). As Xπ∗
0 = lnV 0, without loss of generality, we can assume that

β∗
0 = lnV 0 and γ∗

0 = 0.
It follows from Theorem 4 (see (11)) that X̂π∗

N = lnV N = fN (S•) Q-a.s.
with respect to any measure Q ∈ �N . Hence, we have

fN (S•) = lnV N = lnV 0 +
N∑
t=1

(γ∗
t ,∆St)− C∗

N Q− a.s.

So, the self-financing portfolio with consumption (π∗, C∗) is a perfect
superhedging portfolio with consumption.

It remains to prove that (π∗, C∗) is the minimal perfect superhedging
portfolio with consumption. To prove this, we need the following lemma.

4.1.2.

L e mm a 4 Let fN (S•) be a bounded FS
N -measurable contingent claim, and

let (π∗, C∗) be the perfect superhedging portfolio with consumption defined by
(9), (11), and (18). We assume that (π, C) is any other perfect superhedging
portfolio with consumption, i.e., (π, C) �= (π∗, C∗). Then for any t ∈ N0 and
Q ∈ �N , the following inequality holds Q-a.s.:

1 ≥ exp
{
X̂π∗

t − X̂π
t

}
. (96)
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Proof o f Lemma 4. It follows from Theorem 4 and the assumptions
of the lemma that the contingent claim admits the following representations
with respect to any measure Q ∈ �N :

fN (S•) = X̂π∗

t0
+

N∑
i=t0+1

(γ∗
i ,∆Si)−

(
C∗

N − C∗
t0

)
=

= X̂π
t0
+

N∑
i=t0+1

(γi,∆Si)− (CN − Ct0) Q− a.s.,

where t0 ∈ N0 is arbitrary. Hence, we have the following equality with respect
to any measure Q ∈ �N :

X̂π∗

t0
− X̂π

t0
−

N∑
i=t0+1

∆C∗
i =

N∑
i=t0+1

(γi − γ∗
i ,∆Si)− (97)

− (CN − Ct0) Q− a.s.

Since CN − Ct0 ≥ 0 Q-a.s., it follows from (97) that

X̂π∗

t0
− X̂π

t0
−

N∑
i=t0+1

∆C∗
i ≤

N∑
i=t0+1

(γi − γ∗
i ,∆Si) Q− a.s. (98)

For any t ∈ {t0 + 1, . . . , N} the capital of the perfect superhedging portfolio
with consumption (π∗, C∗) allows the representation X̂π∗

t = lnV t Q-a.s. So,
use of (14) obtains

∆X̂π∗

t = (γ∗
t ,∆St)−∆C∗

t Q− a.s.

Therefore, combining (98) with the last equality, we have

X̂π∗

t0
− X̂π

t0
+

N∑
i=t0+1

[
∆X̂π∗

i − (γi,∆Si)
]
≤ 0 Q− a.s.

Hence, it obviously follows that

exp

{
X̂π∗

t0
− X̂π

t0
+

N∑
i=t0+1

[
∆X̂π∗

i − (γi,∆Si)
]}

≤ 1 Q− a.s. (99)

Now let us calculate the conditional expectation EQ
[
•|FS

t0

]
of the random

variables at both sides of (99) with respect to any Q ∈ �N . Recall that

34



Mathematical model of European option pricing in incomplete market without  transaction costs (discrete time). Part I.	 39

X̂π∗
t0

= lnV t0 , X̂π∗
N = fN (S•). Using (1), we obtain the inequality Q-a.s.

1 ≥ exp
{
X̂π∗

t0
− X̂π

t0

}
EQ

[
exp

{
X̂π∗

N − lnV t0 −
N∑

i=t0+1

(γi,∆Si)

}
|FS

t0

]
=

=
exp

{
X̂π∗

t0
− X̂π

t0

}

V t0

EQ

[
exp

{
fN (S•)−

N∑
i=t0+1

(γi,∆Si)

}
|FS

t0

]
=

= exp
{
X̂π∗

t0
− X̂π

t0

} I
Q,γN

t0+1

t0

(
St0
0

)

V t0

.

As the left-hand side of the last inequality does not depend on Q ∈ �N ,
for each γN

t0+1 ∈ DN
t0+1, we obtain the inequality

1 ≥ exp
{
X̂π∗

t0
− X̂π

t0

} ess sup
Q∈�N

I
Q,γN

t0+1

t0

(
St0
0

)

V t0

Q− a.s. (100)

In turn, inequality (100) implies that for any t ∈ N0 and Q ∈ �N , the
following inequality holds Q-a.s.:

1 ≥ exp
{
X̂π∗

t0
− X̂π

t0

} ess inf
γN
t0+1∈DN

t0+1

ess sup
Q∈�N

I
Q,γN

t0+1

t0

(
St0
0

)

V t0

= exp
{
X̂π∗

t0
− X̂π

t0

}
.

This completes the proof of the lemma.
4.1.3. Here we complete the proof of Theorem 10. Now let us prove that

a perfect superhedging portfolio with consumption (π∗, C∗) is the minimal
one. We assume the opposite, i.e., we assume that there is a moment t0 ∈ N0,
a measure Q ∈ �N , and a perfect superhedging portfolio with consumption
(π, C) such that Q

(
X̂

(π∗)
t0 > X̂

(π)
t0

)
> 0. On the other hand, (96) implies

that Q
(
X̂

(π∗)
t0 > X̂

(π)
t0

)
= 0. This contradiction proves that the perfect

superhedging portfolio with consumption (π∗, C∗) is the minimal one. The
theorem is proved.

4.2. Proof o f Theor em 11. (1) It follows from Corollary 1 and
Theorem 6 that for any γ ∈ Dt, the following inequality holds Q∗-a.s.:

V t−1 ≤ ess sup
Q∈�N

EQ
[
V te

−(γ,∆St)|FS
t−1

]
= (101)

= EQ∗ [
V te

−(γ,∆St)|FS
t−1

]
.
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Suppose that γ = γ∗
t + hγt, where h ∈ (0, 1] is arbitrary and γt is an FS

t−1-
measurable vector. Without loss of generality, we can assume that |γt| ≤ 1.
Then (101) yields the inequality Q∗-a.s.

V t−1 ≤ EQ∗ [
V te

−(γ∗
t ,∆St)e−h(γt,∆St)|FS

t−1

]
= (102)

= V t−1E
Q∗ [

exp
{
∆ lnV t − (γ∗

t ,∆St)
}
e−h(γt,∆St)|FS

t−1

]
.

It follows from Corollary 2 that

∆ lnV t − (γ∗
t ,∆St) = −∆C∗

t ≤ 0 Q∗ − a.s..

Therefore, (102) can be sharpened as follows Q∗-a.s.

1 ≤ EQ∗ [
exp {−∆C∗

t − h (γt,∆St)} |FS
t−1

]
≤ (103)

≤ EQ∗ [
e−h(γt,∆St)|FS

t−1

]
.

Using the Newton–Leibniz formula, we can rewrite (103) for any h ∈ (0, 1]
as

0 ≤ EQ∗


1

h

h∫

0

d

du
e−u(γt,∆St)du|FS

t−1


 = (104)

= −EQ∗


(γt,∆St)

1

h

h∫

0

e−u(γt,∆St)du|FS
t−1


 Q∗ − a.s.

Passing to the limit as h → 0 and using Fatou’s lemma, we obtain Q∗-a.s.

0 ≥ lim
h↓0

EQ∗


(γt,∆St)

1

h

h∫

0

e−u(γt,∆St)du|FS
t−1


 ≥

≥ EQ∗


(γt,∆St) lim

h↓0

1

h

h∫

0

e−u(γt,∆St)du|FS
t−1


 = EQ∗ [

(γt,∆St) |FS
t−1

]
.

Since γt is arbitrary, we obtain

EQ∗ [
∆St|FS

t−1

]
= 0 Q∗ − a.s.

Therefore, the sequence {St,Ft}t∈N0
is a local martingale with respect to the

measure Q∗. Thus, Q∗ is a martingale measure. This completes the proof of
the theorem.
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4.3. Proof o f Theor em 12. On the one hand, Corollary 2 implies
that for any t ∈ N1, the probability Q∗ {∆C∗

t ≥ 0} = 1. Therefore, for any
t ∈ N1, we have

1− e−∆C∗
t ≥ 0 Q∗ − a.s. (105)

On the other hand, Theorem 6 and (14) imply that for any t ∈ N1, we have

EQ∗ [
1− e−∆C∗

t |FS
t−1

]
= 0 Q∗ − a.s. (106)

Combining (105) and (106), we obtain that for any t ∈ N1,

∆C∗
t = 0 Q∗ − a.s. (107)

Since C∗
0 = 0, equality (107) implies that for any t ∈ N0, the probability

Q∗ {C∗
t = 0} = 1.

Let us prove (30). From Theorem 4 (see(11)) and (107) it follows that for
any t ∈ N1, we have Q∗-a.s.

∆ lnV t = (γ∗
t ,∆St) .

We sum up last equalities gives Q∗-a.s. for all t = 0, . . . , k ≤ N :

V k = lnV 0 +
k∑

i=1

(γ∗
i ,∆Si) (108)

In particular, as lnV t|t=N = fN (S•), we have Q∗-a.s.

V t|t=N = fN (S•) = lnV 0 +
N∑
i=1

(γ∗
i ,∆Si) (109)

Let us calculate the conditional expectation EQ∗ [•|FS
0

]
for both sides of

(109). The measure Q∗ is a martingale measure. Hence we have

lnV 0 = EQ∗ [
fN (S•) |FS

0

]
.

This and (109) imply (30). This completes the proof.

R ema r k 10 Suppose martingale {V t,FS
t }t∈N0 admits

decomposition (108) with respect to measure Q∗ belonging to closure of
a set RN (in the topology of weak convergence for probability measures). It
easy to see, that triplet

(
Q∗, γ∗N

1 , V 0

)
is a solution of problem (2). Indeed,

(109) is equal to: lnV 0 = fN −
N∑
i=1

(γ∗
i ,∆Si) Q∗ − a.s. Take exponent and,

after that, conditional expectation EQ∗ [·|FS
0

]
. So, we have (3) from the

definition of the solution for the problem (2).
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4.4.

R e ma r k 11 Let us consider (Ω,F ,P) and the set of equivalent (to P)
probability measures �. Then Dirak measure for any ω̂ ∈ Ω belonging to
support of P belongs also to the closure of �. Indeed, if support of Q̂n is
a closed neighborhood of ω̂ with radius 1

n
and {αn}n≤1: αn > 0, αn ↑ 1

while n → ∞, then Qn � αnQ̂n + (1 − αn)Q belong to � for any n ≥ 1
and converges weakly to Dirak measure of ω̂ (i.e. EQng(ω) → g(ω̂) for any
bounded continuous g).

Proof o f Theor em 13. Suppose there exists solution of
problem (2), namely, triplet

(
Q∗, γ∗N

1 , V 0

)
. It is worth to mention, that non-

redundance of initial (1, S)-market (with respect to P) guarantees, that it
will be non-redundant with respect to the worst-case measure Q∗ (might
be proved similarly to Corollary 2). Hence, for any t ∈ N1, the support of
regular martingale conditional probability Q∗ [·|FS

t

]
consists of at least d+1

elements. If the supports above consist of d + 1 each, we have assertion of
the Theorem.

Else, let us consider discreet function of sets Q̂ specified by:
(1) equality Q̂0(A) � Q∗(A) for any A ∈ FS

0 ;
(2) set of variables {�x̂t,j, p̂t,j}t∈N1,1≤j≤d+1, where (i) for any t ∈ N1

elements of the set {�x̂t,j}t∈N1,1≤j≤d+1 are an affine-independent FS
t−1-

measurable random variables belonging to the support of regular conditional
probability Q∗ [·|FS

t−1

]
(if specified by Ω) such, that for any t ∈ N1 the

following system (with respect to d-dimensional γ and 1-dimensional z) is
incompatible:

(�x̂t,j, γ) ≥ −z,−z > 0 1 ≤ j ≤ d+ 1; (110)

(such a set exists because: (a) support of Q∗ [·|FS
t

]
has a full basis; (b) if the

system for j ∈ {1, ..., d} is compatible, then Lemma 1 guarantees existence
of such �x̂t,d+1, that (�x̂t,d+1, γ) < 0).

(ii) for any t ∈ N1 elements of the set {p̂t,j}t∈N1,1≤j≤d+1 are defined as the
only solution for the problem:

d+1∑
j=1

p̂t,j�x̂t,j = 0,
∑
i≥1

pt,i = 1. (111)

Note, that from the theory for systems of linear equations it is known [14],
that system (111) has non-negative solution, if and only if (110) is
incompatible.

38



Mathematical model of European option pricing in incomplete market without  transaction costs (discrete time). Part I.	 43

Thus, pt,i � Q̂
(
�St = �xt,i|FS

t−1

)
, t ∈ N1, j = 1, ..., d + 1. Note,

that constructed measure Q̂ belongs to close of RN in topology of weak
convergence of probability measures (see Remark 11).

As {�x̂t,j}t∈N1,1≤j≤d+1 is a subset of the support for regular
conditional worst-case probability Q∗ [·|FS

t−1

]
, t ∈ N1, so (γ∗

t ,�x̂t,j) =

lnV t(S0, ..., St−1, St−1 +�x̂t,j), j = 1, ..., d+ 1.
Now, according to Remark 10 triplet

(
Q̂, γ∗N

1 , V 0

)
is a solution for

problem (2) in non-redundant (1, S)-market, where regular conditional
probabilities Q̂

(
·|FS

n−1

)
, t ∈ N1, are discreet and their supports consist of

d+ 1 affine-independent predictable variables.
4.5. Proof o f Theor em s 14 and 15. The assertions follow from

Theorems 10–13.
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9. Föllmer H., Kramkov D. Optional decomposition under constraints.
Prolab. Theory and Related Fields, 1997, vol. 109, pp. 1–25.
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для европейского опциона  

на неполном рынке без транзакционных  
издержек (дискретное время).  

Часть I.

Зверев О.В.1, Хаметов В.М.2, Шелемех Е.А.1

zv-oleg@yandex.ru, khametovvm@mail.ru, letis@mail.ru 
sbulgakov@hse.ru, vmkhametov@hse.ru 

1Центральный экономико-математический институт РАН 
2Национальный исследовательский университет «Высшая школа экономики»

Поступила 20.10.2019

В статье построена модель ценообразования для европейского опциона на многомерном 
неполном рынке без транзакционных издержек с дискретным временем.С начала рас-
смотрена вспомогательная задача по нахождению верхнего гарантированного значения 
ожидаемого значения риска, экспоненциально зависящего от дефицита капитала. Верх-
нее гарантированное значение представляет собой минимаксное значение ожидаемого 
риска. Первой берется верхняя грань по множеству эквивалентных вероятностных мер, 
а затем – нижняя грань по множеству самофинансируемых портфелей. В статье найде-
ны условия существования портфеля, на котором достигается нижняя грань. Этот ре-
зультат позволил построить обобщение опционального разложения функции выплаты 
опциона. Затем получены условия существования вероятностной меры, доставляющей 
максимум ожидаемому значению риска. Эта мера оказалась мартингальной и дискрет-
ной, но в общем случае она не принадлежит множеству эквивалентных вероятностных 
мер. Наконец, показано, как полученные результаты для вспомогательной задачи по-
зволяют получить явные формулы для цены европейского опциона на неполном рынке 
без транзакционных издержек. Во второй части статьи приведены примеры моделей 
ценообразования европейского опциона на рынках с одним рисковым активом: конеч-
ного и с компактным носителем базовой вероятностной меры.
Ключевые слова: европейский опцион, хеджирование, минимаксный портфель, непол-
ный рынок, опциональное разложение, представление, функция риска.
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