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For European option in multidimensional incomplete market without transaction costs
we design discreet time pricing model. At first the following auxiliary problem is to be
considered: to find the upper guaranteed value for the expected risk depending exponentialy
on a shortage. The upper guaranteed value is a minimax of the expected risk. First we take
supremum over a set of equivalent probability measures. Then we take infimum over a set
of self-financing portfolios. Here we find conditions for the existence of a portfolio such that
an infimum is attained. We use this result to find a generalized optional decomposition for
a contingent claim. Further, we obtain conditions for the existence of a probability measure
such that the expected risk is maximal with respect to the measure. This measure turned out
to be martingale and discreet and it does not belong to the set of equivalent measures. Finally,
we demonstrate that our auxiliary results make it possible to obtain explicit pricing formulas
for an European option in an incomplete market without transaction costs. In part I of the
paper we present example models of European options’ pricing in a one-dimensional market
and in a market, where support of basic probability measure is compact.
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Introduction

1. For European option in multidimensional incomplete market without
transaction costs we design discreet time pricing model. The core problem
here is to choose a probability measure with respect to which one should
value an option. In complete markets it is a rule to value an option with
respect to the unique equivalent martingale measure. In incomplete markets
there is a continuum set of such a measures.

The authors of [5], [8], [9], [10], [12], [17], [19] suggest choosing an
equivalent martingale probability measure such that the price of an European
option is maximal. In these papers, one can find methods for constructing
a portfolio and calculating the price of an option for different models of



Oleg Zverey, Vladimir Khametov, Elena Shelemekh

incomplete markets. The methods are based on optional decomposition of
supermartingales.

The authors of [5] establish an optional decomposition under assumption
that the evolution of risky assets’ prices is represented by a diffusion process
with jumps. They prove the existence of a superhedging portfolio with
consumption and find the price of an option using this decomposition.

The authors of [9], [12], [19] prove the existence of an optional
decomposition (for contingent claims) with respect to a class of
equivalent martingale measures in incomplete arbitrage-free markets without
transaction costs. In these papers, they assume that the evolution of risky
assets’ prices is given by a semimartingale. In that case, they provide a
method for calculating the European options’ prices in incomplete markets
in terms of this decomposition.

In [8], [10], [17], the authors also establish the existence of an optional
decomposition of contingent claims with respect to equivalent martingale
measures in incomplete arbitrage-free markets without transaction costs in
discrete time and provide a method for option pricing in terms of this
decomposition.

In [11] for an abstract model of market they have found necessary and
sufficient conditions for existence of representation for an upper hedging price
7(B), where B is a nonnegative contingent claim in the form of functional

sup EnB and D is a set of nonnegative random variables. There is also a
neD
detailed review of results on theory of European options’ superhedging in

incomplete markets.

Note that this approach to option pricing requires calculation of a
essential supremum over a set of martingale measures of functionals’
conditional expectations, where the functionals are defined on the trajectories
of risky assets’ prices; calculation of this essential supremum is a substantial
mathematical problem. For this reason, in [5], [8], [9], [10], [12], [17],
[19], there is a lack of explicit formulas describing the portfolio process
and the corresponding process of the capital evolution. It is well known
[1], 6], [13] that the calculation of essential supremum of additive or
multiplicative functional’s conditional expectation (where a functional is
defined on trajectories of a controlled random process) is an object of
stochastic optimal control. In this theory, they solve the problem using
methods of the stochastic dynamic programming (see, e.g., [5]).

2. In this paper, we design pricing model for European option in
incomplete market without transaction costs when time is discrete applying
the minimax principle (in contrast to [5], [8], [9], [10], [12], [17], [19]) that
can be formulated as follows: (i) as far as the probability distribution of the
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risky assets’ price evolution process is unknown, one should suppose that it
maximizes the price of an European option; (ii) one should buy with minimal
capital as many risky assets as to be sure to cover an option’s contingent
claim. In this paper, the realization of this principle is based on the following
two opportunities. The first one is the reduction of a minimax calculation
problem to a game problem of optimal stochastic control. The second one is
based on the reduction of an European options pricing problem to a game
problem of optimal stochastic control with a multiplicative functional. The
last opportunity follows from the results of [4].

3. Let us outline our approach to FEuropean option’s price modelling. We
consider a multidimensional incomplete market specified by a semimartingale
and a European option with finite time horizon and bounded pay-off.

At first we study auxiliary game problem. Specifically, suppose that there
are two players watching the d-dimensional sequence of risky assets’ prices.
The first player represents a market. Its strategies are probability measures
defined on the trajectories of risky assets’ prices and equivalent to some
basic measure. The second player manages assets. His strategies are self-
financing portfolios (described by multidimensional predictable sequences).
We suppose that the risk function (the payoff function of the second player):
(i) depends on his shortfall; (ii) is exponential (this choice will be explained
later). As in [10], the shortfall is the difference between a contingent claim
and the profit gained by the second player from the portfolio during the
option lifetime, i.e., We also suppose that the players are "rational" and
choose their strategies independently. The first player maximizes the expected
risk over a set equivalent probability measures. The second player minimizes
the expected risk over admissible (in a sense clarified below) self-financing
portfolios. Therefore we have the minimax problem.

The idea to consider such a problem goes back to [4], where the problem
was solved for a special case. The authors used the method of stochastic
dynamic programming to prove the existence of the S-representation of
martingales (for the definition of S-representation, see [17]). In this paper,
we generalize this result (see Theorem 4). Note that we have chosen the
exponential risk function just because it allows us to apply the above-
stated method. The solution of our auxiliary problem (2) allows us: (1) to
establish an analogue of the optional decomposition for any F°-measurable
bounded function fy, i.e., for any contingent claim in the European options’
problem in incomplete markets without transaction costs; (2) to investigate
the properties of the measure with respect to which the essential supremum of
Lebesgue integral is attained; (3) to choose a probability measure with respect
to which one should estimate an option. Finally, all these made it possible to
design our pricing model for European option in incomplete market, namely:
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(1) to find a portfolio of assets at any moment and the corresponding capital;
(2) to calculate the upper bound for spread.

4. Let us briefly discuss the structure of the paper. The paper is in
two parts. Here contents of the first part is outlined. Section 1 deals with
our auxiliary game problem (2). First, it is shown that we can use the
method of stochastic dynamic programming for that problem, i.e. we prove
that sequence of upper guaranteed values satisfies recurrent relation (5)
(Theorem 1). Further, we determine conditions for the existence of admissible
portfolio such that the outer essential infimum is attained (Theorem 3).
We use this result to prove that the contingent claim allows an optional
decomposition with respect to the class of equivalent measures (Theorem 4).
Further, we find conditions for the existence of a probability measure with
respect to which the inner essential supremum is attained (Theorem 6). From
these results existence condition for solution of auxiliary problem follows
(Theorem 8). For convenience of reading all proves are grouped in Section 3.

In Section 2, we design our pricing model for European option in an
incomplete market without transaction costs when time is discrete. First, we
use Theorem 4 (an analog of the optional decomposition) to link auxiliary
problem (2) and the superhedging problem [17]; namely, we construct perfect
superhedging portfolio for a European option in an incomplete market
without transaction costs (Theorem 10). Also here we prove, that the capital
of the above-mentioned perfect superhedging portfolio (constructed for the
exponential risk function) is less than or equal to the capital of any other
perfect superhedging portfolio at any time moment. This means that the
capital of the minimal prefect superhedging portfolio coincides with the upper
bound of the spread. Further, we prove that the measure with respect to
which essential supremum is attained (constructed in Section 1, we call it the
worst-case measure) is a martingale one (Theorem 11). So, a contingent claim
admits an S-representation [17] with respect to the measure (Theorem 12).
Besides, we prove that there is discrete worst-case measure (Theorem 13) and
in the case of incomplete market it is not equivalent to the basic measure
( Remark 7 ). It follows from these statements that we can identify the
initial incomplete market with a complete one with respect to the worst-case
measure and the corresponding minimal perfect superhedging portfolio has
zero consumption. This portfolio is called a minimax hedging portfolio. Note
that the capital of the minimax hedgeing portfolio coincides with the upper
bound of the spread. And as the market is complete with respect to the
worst-case measure, it is possible to calculate it explicitly. All statements of
Section 2 are proved in Section 4.

The second part of the paper consists of two sections with examples.
Using our pricing model of part I, in Section 5 we construct the minimax
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hedging portfolio for a European option in a one-dimensional finite
incomplete market. In Section 6, we give an example of a European option’
pricing in an one-dimensional incomplete compact market.

§1. Auxiliary minimax problem

In this section we consider auxiliary minimax problem (2) and, as a result,
find existence conditions for it’s solution. These results are essential for our
prising model to be constructed in Section 2. Though problem (2) and our
approach to the solution are interesting in themselves.

1.1. First let us introduce some notation.

1.1.1. Let {St, Fi},cn+ be a d-dimensional adapted random sequence on
the stochastic basis (Q, F, (F;),cn+ » P). Suppose that:

(i) a probability measure P is fixed (this measure is said to be basic [17]);

(ii) for any t € N* the o-algebra F; = F° = 0 (S, u < t).

Together stochastic basis (€, F, (F¢)en+ - P) and {S;, Fi},cn+ specify a
financial {1, S}-market [17].

By Ry we denote the set of all probability measures on (Q, F, (ths ) e No)

such that any measure Q € Ry is equivalent to the basic measure P. Without
loss of generality we suppose that P € Ry; so, Ry # @. The set of all
martingale measures (i.e. measures with respect to which {S;, Fi},cy, 1s a
local martingale, see [17]) is denoted by I y.

The expectation of a random variable § with respect to a probability
measure Q (P) is denoted by E?0 (EP9), and EX (0|.F) is the conditional
expectation with respect to the measure Q and the o-algebra F°.

1.1.2. Let fy (S,) be a bounded Fy-measurable random variable, where
N € N*. Here fy (S.) (or short fx) represents pay-off function of European
option with horizon N [17], [10]. We write N, = {k,k+1,k+2,..., N},
ke{0,..,N}.

A d-dimensional F®-predictable sequence is called a strategy and is
denoted by 7 = {y},cn,, where Ny = {1,2,...,N}. The vector v is a

control at a time ¢t € N;. By U we denote the set of strategies. Let [71N be
an arbitrary subset of UN. By Uf? we denote the reduction of the set UN
to {t1,...,ta} € Nj, where t1,t5 € Ny and to > t;. Thus, we will use the
following notation ;2 € ﬁff, where %2 £ {7y, ..., Y, }-

1.1.3.

Definition 1 A pair (Q,7,) € Ry x U, is called a t-bistrategy, t €
Ny; (Q,’Y{V) € Ry x UY is a bistrategy, and v, € UL, is a t-strategy.
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Definition 2 An estimate of a t-bistrategy (Q, vﬁl), t € Ny, is an Fp -
N
measurable random variable (denoted by ItQ’%“ (S5)) defined by

1275 (s1) £ E° [exp {fN (50— 3 mASi)} ff] W

1=t+1

Above (e, @) is the scalar product in a multidimensional Euclidean space,

AS;, 285, -8, 1.

Definition 3 A random wariable fx(S,) and a strategy ¥ are
N
admissible if ess sup EQISM1 (Sp) <00 Q—a.s.
QeRN

As fy is bounded Q-a.s., so pair (fN,’y{V) is admissible if
N
esssup EQ exp{— > (%-,ASi)} < 0o Q —a.s. For given fy, by DV we

QeRy i=1
denote the set of all admissible strategies vi¥. Note, that DY # & as trivial

strategy belongs to admissible pair ( v,y ) for any Q-a.s. bounded fy.
Definition 4 A bistrategy (Q,71') € Ry x DY is said to be admissible.

We consider the following problem:

N
]gml (Sp) —> essinf esssup. (2)
WeEDT  QeRy

— N
Definition 5 The random variable Vi, = essinf esssup I(?m (Sp) is
1 EDY  QeRy
called the upper guaranteed value.

Definitions of essinf and esssup with respect to a basic measure P can
be found in [7], [10], [17], [18].
Note that Vy is an Fj-measurable random variable.

Definition 6 The triplet (Q*, 7N, Vo):
J— * %N
Vo = IS’ T (So) - (3)

is a solution of the minimax problem (2); here the probability measure Q* is
called the worst-case measure, the strategy viN € DY is called the minimaz
strategy and together (Q*,fﬁN ) are referred to as the minimaz bistrategy.
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1.2. To solve problem (2) we use the stochastic version of dynamic
programming. So we define sequence of upper guaranteed values as follows.

Definition 7 A random variable

. N
V2 essinf esssup ftQ’%H (Sé) (4)

N N
V1€ QeRy

15 called the upper guaranteed value at a time t € Nj.

According to the definitions of essinf and esssup (see [10], [17]) V; is an
FP-measurable random variable. o

In this section, we give a recurrent relation for the sequence {Vt, FP } teNy”
Theorem 1 Suppose fx(S.) is an Fxy-measurable bounded random

variable. Then {Vt, ‘Fts}teNo satisfies the recurrent relation P-a.s.

YE€Dt+1 QeRy (5)

V, =essinf ess sup E® [VtHe_(%Ast“)\ftS] , 0<t<N,
Vt't:N — efN(So).

Corollary 1 Suppose, the assumptions of Theorem 1 are satisfied. Then
(1) for any t € N1 and Q € Ry, the following inequality holds P-a.s.:

Vier 2 essint B9 [Vie 09%|72, ()

ye€Dy

(2) for any t € Ny and v € Dy, the following inequality holds P-a.s.:

Vi1 < esssup EQ [Vte_(%ASt)\ftS_J . (7)
QeRN

1.3. Upper guaranteed value might be a priori estimated as follows.

Theorem 2 Suppose:
(1) conditions of Theorem 1 are satisfied;
(2) there exists constant co such that |fn(Se)| < co P-a.s.;
(3) Ry N My 7£ .
Than for any t € Ny the following inequalities hold P-a.s.

e <V, < e (8)

1.4. In this subsection we give a sufficient condition for the “outer”
essential infimum in (5) to be attained.
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Theorem 3 Suppose:
(1) the assumptions of Theorem 1 are satisfied;
(2) Ry N My 7£ .
Then there is a strategy {7, },en, € DY such that for any t € Ny, P-a.s.

V, = essinf esssup EQ {Vt+16_(77ASt+1)|_ES] = (9)

YED 41 QeRy

— esssup E® [Vtﬂe_(ﬁﬂ’ASt“”Ff] .
QeRN

Moreover, for any t € N1 and Q € Ry the following inequality is true:
Vi > EQ[Vie 09| 75 ] P—as. (10)
Remark 1 [t follows from Corollary 1 that for any t € Ny and Q € Ry,
V, > I3 () Q(P) — as.,
where v € DX, is defined by (9).

1.5. In this subsection we use Theorem 3 to obtain a condition for any
Fy-measurable bounded random variable to have a decomposition similar to
the optional decomposition [10], [17].

Theorem 4 Let {Vt,]:ts}teNo be defined by (5). Suppose, there exist a

strategy {7} hen, € DY satisfying (9) for any t € Ny. Then for any t € N,
and Q € Ry, the sequence

ACF 2 AV, — (v/,AS) >0, C;=0 Q- a.s., (11)

is Q-a.s. nondecreasing and the following decomposition holds for any Q €

§RN.'
N
fn(S)=mVo+ ) (7,A8) - Cyh Q- as. (12)

i=1

Remark 2 (1) IfY; £ esssup EQ[f|F]], where f is a Fy-measurable
QERNNM v
bounded random variable, then in [17] (see theorem on page 674), it is proved

that {Yt, ‘Fts}teNo is a supermartingale with respect to any Q € Ry N My
(2) According to [10] (see theorem 7.5 on page 330) the following
assertions are equivalent:
(i) {Y;, ‘Fts}teNo is a supermartingale with respect to any Q € Ry N My,
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(ii) there are nondecreasing sequence {Cjtien, and d-dimensional

predictable sequence {v} hen, such that Yy admits representation Yy = Yy +
t

> (v, AS;) — Cf P-a.s. This representation is called optional decomposition
i=1

or uniform Doob decomposition [5, 8, 9, 10, 12].

In contract to above mentioned works, Theorem /:

(i) does not require sequence {ln Vi, 'Fts}teNo to be a supermartingale with
respect to any Q € Ry N My, Ry N My # I,

(11) presents constructive method which allows construction of d-
dimensional predictable minimaz strategy ;N and nondecreasing sequence
{C; heny, t.e. components of optional decomposition (12);

We do not use results of [5, 8, 9, 10, 12] to prove Theorem 4.

(8) Theorem 4 implies the following inequality for any measure Q € Ry :

N
fn(8) <Vo+) (77,AS8) Q- as.

i=1
Thus if the sequence {St,}"ts}te% 15 a local martingale with respect
to a measure Q, then {1th,f§}teNo and {EQ [fN (Se) ]f'ﬂ }teNo are
supermartingales with respect to any Q € Ry .

(4) Condition Ry N My # & means that (1,S)-market in consideration
18 tncomplete.

1.6. Theorem below provides (formal) existence conditions for the worst-
case probability measure.

Theorem 5 Let& be any Fy-measurable P-a.s. bounded random variable.
Then the following is true:
(1) there exist
probability measure X on (2, F) such, that A > Q for any Q € Ry,
and
a set of non-negative F-measurable random variables { Xy}, -, with:
(i) B’ X}, =1, k > 1; (ii) sup EQ¢ = lim EAX¢;
Qe k— o0
(2) if {Xk}ys, i a weakly relatively compact sequence in L' (Q, F, ),
then there exists probability measure Q* on (€2, F):

sup EQ¢ = EY¢. (13)
QeRy
Remark 3 (1) Weakly relatively compactness condition for { Xy}, is
difficult to verify. Thus the theorem is non-usable. Still it allows us to consider
properties of problem (2) solution.
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(2) In contrast to [10], [17], theorem 5 provides sufficient conditions
for Lebesgue integral of bounded measurable random wvariable to attain it’s
supremum over the set of equivalent probability measures. Yet it is well
known [2], [16], that, as a rule, supremum is attained on finitely additive
measure. So, expectation is not defined and it is impossible to construct
solution for option’s pricing problem. That is why theorem & is critical for
our construction. Note, that [2], [16] present another non-usable conditions
for countable additivity of "extremal” measure.

(8) According to Dunford-Pettis theorem [10] requirement of theorem 5 for
{ Xk}, to be weakly relatively compact might be rewritten as requirement for
boundedness and uniform integrability in L' (0, F,X). Moreover, if { Xy},
is weakly closed and convex, then according to James theorem [10] weakly
relatively compactness condition for {Xy},~, is necessary and sufficient for
a Lebesque integral to attain supremum.

(4) Obuviously, if £(w) takes values in final set or in countable (or final)
union of compact sets, then: (i) there is w* € Q: £(w*) = sup; (ii) sup EQE is

wen QeR
attained on Q*: Q*({w*}) =1, Q*(Q\ w*) = 0.

1.7. Here we implement Theorems 3 and 5 to gain new recurrent relation
for the sequence of upper guaranteed values.

Theorem 6 Suppose, the assumptions of Theorems 3 and 5 are satisfied.
Then (Vt, ]-"ts)te]\[1 satisfies the recurrent relation Q*-a.s.

{ Vi, =E¥ [Vte_w’ASt”FtS—J 3 (14)

Vile—n = exp{fn (S.)}.

1.8. From Theorems 4 and 5 an important assertion follows.

Corollary 2 If (Vi, F),n.
for any t € Ny, decomposition (11) holds with respect to the measure Q*, i.e.,

satisfies the recurrent relation (14), then

AV, = (vi,AS;) — AC; Q" — a.s. (15)

1.9. In this subsection, we give a criterion for the probability measure Q*
to be the worst-case measure.

Definition 8 Let {ﬁt,FtS} be defined by formula

te Ny

Et Avtexp{Z(’ﬁJASi)} ) (16)

i=1
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where Vy satisfies recurrent relation (5) and {7} },cn, € DY is the minimaz
strategy defined by (9). The sequence {f,, F;'}
S-estimating one.

ren, 18 said to be an upper

Remark 4 It follows from Theorem 3 (equality (10)) that the upper
S-estimating sequence is a supermartingale with respect to any measure

Q € Ry.

Theorem 7 Suppose, the assumptions of Theorem 6 are satisfied. Then
the following conditions are equivalent:

(1) Q* is the worst-case probability distribution;

(2) equality (14) holds for any t € Ny;

(3) the upper S-estimating sequence {ﬁt,}"ts}
respect to the measure Q.

e, 18 0 martingale with

1.10. The main result of this section follows from Theorems 1-7.

Theorem 8 Suppose that the assumptions of Theorem 6 are satisfied.
Then there ezists a solution of minimaz problem (2).

§2 Minimax hedging of a European option in an incomplete
market

In this section, we use the results of Section 1 to link problem (2) and
the problem of European options’ pricing in incomplete markets without
transaction costs. We also give existence conditions for the minimal perfect
superhedging portfolio (Theorem 10). We use Theorem 6 to formulate the
following assertions: (1) the worst-case measure Q* is a martingale one
(Theorem 11); (2) for any bounded contingent claim, there exists an S-
representation [17] with respect to Q* (Theorem 12). Further, we state
that the worst-case measure Q* is discrete and does not belong to Ry
(Theorem 13). A (1,S)-market with respect to Q* is called the worst-
case complete market. The corresponding portfolio is called the minimaz
hedging one. Finally, we provide and prove a method for finding the price
of an European option in an incomplete market without transaction costs
(Theorem 15).

2.1. In this subsection, we recall some concepts of option pricing theory
(see [17], [10]); the economic interpretation can be found in [10].

2.1.1 Let { S, Fi},cn, be the d-dimensional adapted sequence defined in
Subsection 1.1.1. Suppose that this sequence describes the evolution of d
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risky assets’ prices [17]. We also suppose that there is a riskless asset [17]
with zero return and the initial price 1. This collection of assets is called
(1, 8)-market [17]. An Fy-measurable random variable fy (S,) is called a
European contingent claim with maturity N € N* [17]. Let {#:},.y, be an
F9-predictable one-dimensional sequence. Its elements can be interpreted [17]
as the quantity of a riskless asset. Let {v:},cy, be an FS-predictable d-
dimensional sequence introduced in Subsection 1.1.2. Note that such a
sequence is called a strategy. The ith (z = 1,_d) component of the vector
¢ represents [17] the quantity of the ith risky asset at a time ¢t € N;. The
sequence of pairs © = (@,fyt)teNo is called a portfolio. The capital of the
portfolio m at a time t € Ny [17] in the (1,5(1), . .,S(d))—market is an JFp-
measurable random variable X7 such that

X =B+ (S, %) - (17)
The portfolio 7 is a self-financing one [17] if for any ¢ € Ny, P-a.s.
Aﬂt + (St—17 A’yt) = 0. (18)

The set of all self-financing portfolios is denoted by SF'.

An adapted nondecreasing sequence C' £ {C’t, F? } s N such that Cy|i—g =
0 is called consumption [17]. The pair (7, C') is a portfolio with consumption
[17]. The capital of a portfolio with consumption (7, C') at a time t € Ny is
denoted by )?t(ﬂ) and defined by the formula

XF2XT—C, (19)

It follows from (17)—(19) that at any time t € Ny, the capital )A(t” of a self-
financing portfolio with consumption (7, C') admits the representation P-a.s.

t
XT=X3+> (3, A8) = Ch. (20)

1=1

2.1.2. A (1,5)-market is said to be arbitrage-free [17] if the
following condition holds for the capital of any portfolio # € SF: if
P(X% > 0/XJ =0) =1, then P (X% = 0|XJ =0) = 1. It is well known [17]
that if there is at least one martingale probability measure in a (1, S)-market,
then the market is arbitrage-free.

2.1.3. Recall [17], that an arbitrage-free (1,S)-market is complete with
respect to measure Q € Ry N My if for any bounded fy (S,) there is a
portfolio 7 € SF with the capital X% such that fy (S,) = X5 Q — a.s.



Mathematical model of European option pricing in incomplete market without transaction costs (discrete time). Part I.

17

Definition 9 /[17]. A one-dimensional martingale (O, .7-}(’1)756]\]0 is said

to admit an S-representation with respect to the d-dimensional martingale
(St,}"ts) and the measure Q € Ry N My if there is an F°-predictable

teN,
d-dimensional sequence {Vi},en, such that for anyt € Ny,
t ~
O, =00+ Y (1,AS) Q-as. (21)
i=1

The following assertion is well known (see [10], [17]).

Theorem 9 Suppose that Q € My N Ry (# D). Then the following
conditions are equivalent:

(1) (1, S)-market is complete;

(2) My N Ry = {Q};

(3) any local martingale (©y, F;)

respect to the measure Q e My NRy.

te N admits an S-representation with

That is why they say [10], [17], that an arbitrage-free (1,S)-market is
incomplete if My NRy| > 1.

2.1.4. Generally speaking, the above-defined (see Subsection 2.1.1) (1, .5)-
market is incomplete. Thus, there is a problem of selecting a measure with
respect to which one should calculate the price of an European option. As was
previously mentioned, we use the minimax approach to solve this problem.
This approach allows us to describe a (1, S)-market by means of the worst-
case probability distribution. There we will need results of Section 1.

2.1.5. A (1, S)-market is said to be non-redundant 10|, if for any ¢ € Ny
and Q € Ry (1, AS;) = 0 Q-a.s. implies Q-a.s. triviality for ;. Note, non-
redundant condition is not essential: one can fairly exclude "excessive" assets.

2.2. Now we give the definition of minimax superhedging portfolio with
consumption.

Definition 10 [17]. A self-financing portfolio with consumption (m,C)
in a (1,5)-market in the problem of European option pricing with contingent
clatm fy (Se) is said to be superhedging with consumption if fn (Ss) <
)/(\']7{, P—a.s.

Definition 11 [17]. A superhedging portfolio with consumption (mw,C')
is a perfect one if R
fn(Se) =Xy P—as. (22)
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Conditions for the existence of a perfect superhedging portfolio with
respect to a measure Q € My N Ry can be found in [17] (see Theorem 2,
p. 652) and in [10] (see Theorem 7.13, p. 335).

Definition 12 A perfect superhedging portfolio with consumption
(m*,C*) is the minimal one if for any other perfect superhedging portfolio
with consumption (w,C) and for any t € Ny, the inequality holds P-a.s.:

X< X (23)

In this subsection, we give conditions for the existence of the minimal
perfect superhedging portfolio with consumption. These conditions are based
on Theorem 4. Moreover, the assertion given below links problem (2) to
the problem of minimax perfect superhedging portfolio construction for a
European option in an incomplete (1, S)-market.

Theorem 10 Consider a (1,S)-market. Suppose that the assumptions of
Theorem 4 are satisfied. Then the minimal perfect superhedging portfolio with
consumption (%, C*) exists with respect to any Q € Ry, namely

(1) self-financing portfolio 7 = {Bf,7; },en,» where {7} }en, € DY is an
admissible predictable sequence satisfying (9), and {ﬁt*}tezvo 1s defined by

AB: + (St—la A’ﬁk) = 07
{ B¥lizo = B, (24)

one can choose 35 = InV (which can be obtained using (5)) and v; = 0; for
any t € Ny, the capital of the portfolio ™ can be represented as

X =8+ (75 Q-as (25)

(2) for any t € Ny and Q € Ry, the capital X7~ of the superhedging
portfolio with consumption (7*, C*) admits the representation

X7 =V, Q—as., (26)

where V; satisfies recurrent relation (5) and the consumption C7 at any
moment t € Ny admits the representation Q-a.s.

{ ACY :_('V ASy) — AXZT* > 0, (27)

*
t
Cffli=o = 0,

moreover, the following equalities hold
(a) X = XI — C; Q-a.s.,
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(b)
A . t
X[ =WVo+> (3,A8) - C; Q- as. (28)

=1

(8) (7*,C*) is a perfect superhedging portfolio with consumption, i.e.,
XT = fnv(S)) Q—as.; (29)

(4) (7*,C*) is the minimal perfect superhedging portfolio with
consumption.

Remark 5 It s difficult to apply Theorem 10 to calculate the price of an
FEuropean option in an incomplete market without transaction costs. Indeed,
it is necessary to solve recurrent relation (9). This implies the problem of
calculating the consumption {C}}, . -

2.3. Now we are going to consider some useful properties of solution
for problem (2). Let us start with martingale property for the worst-case
measure.

Theorem 11 Suppose the solution of problem (2) exists. Then Q* is a
martingale measure.

2.4. In this subsection, we give conditions for the existence of the S-
representation for any bounded contingent claim with respect to the measure
Q*. These conditions are based on Theorem 4.

Theorem 12 Fiz arbitrary Fy-measurable bounded contingent claim fy.
Suppose the solution of problem (2) for such fy exists. Then fn admits
representation with respect to the measure Q*

fn (S) =EY [fn (SO IF]+ D (05 AS) Q= as, (30)

=1

where {fy;‘,]:ts_l} is the d-dimensional predictable sequence satisfing (9).

teENT

Remark 6 (1) It is possible that Q* ¢ Ry. Thus, the well-known
Lemma 10 of [17] (see p. 611) and Lemma 5.3.9 of [10] don’t imply
Theorem 11. In Section 4, we use Theorems 4 and 6 to prove that the S-
representation exists.

(2) 1t follows from Corollary 2 and Theorem 12 that for any t € Ny,

{ Alnvt = (’)/Zk, ASt)

Vo =InVy, InVin = fn(S) Q —as. (31)
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The measure Q* is a martingale one. Hence formula (31) yields
InV,=EY [~ (Se) |.F(ﬂ Q" — a.s. (32)

(8) Formula (31) implies, that in non-redundant (1,5)-market {v; }ien,
is unique (i.e. if there is {Ji}en, satisfying (31), then 4 = v Q*-a.s. for
any t € Ny).

(4) For any t € Ny, the consumption C] is trivial with respect to the
measure Q*. Therefore, X7 = X[ Q*-a.s. Hence we conclude that the capital
of the portfolio m* € SF admits the representation Q*-a.s.

¢
X" =InVy+ Z (v, AS;) Q" —a.s (33)

i=1
at any moment t € Ny. Moreover,
X7 =EY [fn(So)|F] =V, Q — a.s. (34)
2.5.

Theorem 13 Suppose {1,S}-market is non-redundant and the solution
of problem (2) exists. Then there is worst-case probability measure such, that
reqular conditional probabilities Q* (-|.7:7f_1), t € Ny, are discreet and their
supports consist of d + 1 affine-independent predictable variables.

Remark 7 From Theorem 13 it follows, that in the case of non-redundant
market there exists such worst-case discreet measure Q*, that there is no
martingale probability measure Q: Q # Q* and Q ~ Q* (another contradicts
to affine-independence of support’s elements). There are two important
consequences: (1) Q* & Ry N My, thus Q* & Ry ; (2) QF specifies complete

market.

2.6. It follows from Theorems 11-13 and Remark 10 that the considered
(1,.5)-market can be identified with a complete market with respect to Q*.
This remark leads to the following definition.

Definition 13 Fiz F5-measurable bounded contingent claim fy. A non-
redundant (1,S)-market will be called the worst-case complete for fn if there
exist
a worst-case martingale probability measure Q*, such that conditions
Q € My and Q ~ Q* imply Q(A) = Q*(A) for any A € Fx., and
a portfolio 7* € SF
such that the following equality holds at the moment N :

Xy =fv Q —as.

Such a portfolio 7 is called a minimax hedging portfolio.
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Definition 13 and Theorems 10-13 imply the following assertion.

Theorem 14 Suppose the solution of problem (2) exists. Then the worst-
case complete market exists. Moreover, the capital of the minimax hedging
portfolio is equal to the capital of the minimal perfect superhedging portfolio
with Q*-a.s. trivial consumption

2.7. It follows from Theorem 10 that there exists a minimal perfect
superhedging portfolio with respect to any measure Q € Ry. However, this
result does not provide any method for constructing such a portfolio and its
capital. In this subsection, we give a general representation of the minimax
hedging portfolio and of its capital by use of Theorems 11-14.

Theorem 15 Let 7* € SF be the minimaz hedging portfolio. Suppose the
solution of problem (2) exists. Then:
(1) the minimaz hedging portfolio 7 admits the following representation.:
(i) for each t € Ny, there exists an F. ,-measurable d-dimensional ~;
such that
{ V,_1 = essinf EQ Wte_(%ASﬂ]?_J = E¥ [Vte_(ﬁ’ASﬂftS_J Q* — a.s.

’YGDt

Vileen = exp {fw (S0)};

(35)
(ii) for each t € Ny, there exists an Fp -measurable 3 such that
Bf =B = (0 Si)
Lo (30)

where B =1V and v; = 0;
(2) for each t € Ny, the capital XTI of 7" € SF admits the following
representations Q_*-a.s. :
(a) X" =InV,,
t —
(b) X = XF + > (v, AS), X% = fn(S,) Q*-a.5., X =InV, =
i=1
EQ [fn (Sa) 73]
Remark 8 The capital of the minimaz hedging portfolio is X7

EQ [fN (Se) |.7-"§]. The value XF s the upper bound of the spread for an
European option in an incomplete market.

§3. Proofs of Assertions 1-9
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3.1. Here we prove Theorem 1 and Corollary 1. To prove these assertions,
we make some preparatory notes.

3.1.1. Since Q € Ry is a measure, it follows from the Radon—Nikodym
theorem that there exists C?Qunique Fn-measurable positive random variable
ap (w).
the measure Q with respect to measure P. Suppose that Q; £ Q|7 and
P, 2 P|z. Obviously, for any t € N, the probability measures Q, and P,
are equivalent. Hance there exists a unique JF;-measurable positive random

A t

variable z; (w) = =P, (w) such that:
¢

(i) for any t € Ny, 0 < z; < o0 P-a.s,;

(11) if QO = P(), then Zt|t:O = 1,

(iii) for each t € Ny, EP(2|Fi_1) = 21 P-a.s. The variable 2 (w) is a
local density.

For any t € Ny, we let 7?[ denote the set of sequences {z!N, F¥'}
such that

zy such that zy (w) = The variable zy is called the density of

s€Np

L[ L oo<s<t,
T 2 t<s<A. (37)
2t

Let us denote z¥ £ {zHN}
It is clear that the sequence {ii’N }Se No is a martingale with respect to
the measure P and the filtration {F7}

The family of sets {Zﬁv } has the following properties (see [17]):
te Ny

()7, CZ C C 7
(2) for each t € Ny, a set Ziv is convex.
The reduction of the set 7? to {t1,...,t2}, where t; < ty and 1,13 € Ny,

is denoted by 72?, and its elements are denoted by Eﬁf
3.1.2. Consider the estimate of an admissible t-bistrategy (Q,’yﬁrl). It

sENy”

N
follows from the law of iterated expectations that ItQ (S satisfies the
recurrent relation Q-a.s.

187 (st) = B0 [120 (5571) e sz
Qs
I b (S0) li=n = exp {fn (S.)} -

As we know, Q, P € Ry. Therefore, it follows from the definition of the
estimate of an admissible ¢-bistrategy (Q,7;};) (denoted by ItQ T (SE)) and

(38)
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Girsanov’s theorem [18| that Q (P)-a.s.

ItQmNH (St) = EP [Eiv exp {fN (Se) — Z (’ViyASi)} ]:{g] - (39)

1=t+1

EN N
Let us also denote the right-hand side of equality (39) by Itp’ (S where
(N, ) € Z{v x DY . It follows from (38) and (39) that for any ¢t € Ny

N . PzN AN .
and (z),7}\,) € Z, x D}, the random variable I, ST (S satisfies the
recurrent relation P-a.s.

_N _N <N N
ItP,zt V41 (Sé) _ EP [Eiﬁ];itﬁ_lﬁt—ﬂ (Sé—l—l) 6—(fyt+1,ASt+1)|FtS ‘ (40)

QY1 [ ot _ PZY M [ a
For any t € Ny, we have I, (S§) = 1, (S§) P-a.s. Hence the random

variable V; admits the representation

J— EN N
Vi = essinf esssup ]tP’ s (S5) P-—as. (41)

N DN —N
Yer1€P¢ ZNeZ,

3.1.3. PROOF OF THEOREM 1. First we prove that for any ¢t € Ny,
the following inequality holds P-a.s.:

V, > essinf esssup EQ [V, qe” (02590 F5] (42)
1€Dt+1 QeRy

By definition,

Tf’vg“ (Sé) £ esssup I:’Eivﬁﬁl (Sé) ) (43)

— N
zNeZ,

. N
It follows from the definition of essential supremum that [/ f T (SE) is an

FP-measurable variable. The ]f satisfies recurrent relation (40).

Hence the properties of essential supremum and Girsanov’s theorem imply
the formulas P-a.s.

721];\]77{\-1-1 (St)
0

—PKYt]\.]H t P |=t,N P,Eﬁuﬁﬁ-z t+1\ — 1,AS: 11 S
I, (S5) =esssup E” |z 1) (SE1) e CranASir)| £S5 >

_N, N
zNeZ,

=N N
P |=t,N P21 t+1\ ,—(vt+1,ASt+1) | TS|
> esssup E [thItH (Sett) e |F7 | =
ZN1€Z04
_ EP Et’N ess su [Pﬁﬁlﬁi\iQ (St—l-l) 6—(7t+1,ASt+1)|fS _
= t+1 Pl 0 t | =

—_N N
Zi41€2 041

_ EP [ziﬂjf_gﬁ2 (Sé+1) e—(’YtJrl,AStJrl)lf;S] = (44)
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= B [T (s s 7]

Note that the left-hand side of (44) does not depend on the measure Q.
Hence, it follows from (44) that P-a.s.

_P7 N ) —_
I, Vi+1 (Sé> > e(SQS ;up EQ |7 [ t+’71t+2 (St-i-l) (7t+1»ASt+1)’FtS:| _
Ehn

This inequality can be sharpened as follows:

— N
If’%“ (Sé) > esssup EQ [ ess 1n1£ Itjjf“ (StH) ~(t1,A8041) fS] (45)

QeRy Viy2€DN

> essinf esssup EQ
Ye+1€D11 QeRy

Py

ess inf T (S5 e dSe)| B8 10 P —as,
eDN

W2 EDY

Applying the formula V., = ess inf Itjjf“ (S6™) to inequality (45), we
T 2€EDN o
obtain P-a.s.

. N
Ifa')’t+1 (Sp) > essinf esssup EQ [Vtﬂe*(%ﬂ,AStﬂ)U_—tS} _ (46)
Te+1€D1 QeRy

The right-hand side of (46) does not depend on ;41 € Dyy1. So (46) imply
(42).
Now let us show that for any t € Ny, the following inequality holds P-a.s.:

V, < essinf esssu EQ [V, e~ (1AS1) ]-'S 47
t Cep QeﬁRNp r 1 | } ( )

Since It SRk (Sé“) < Itff” (S5*1) P-as., it follows from Girsanov’s

theorem that for any 7/}, € D}, the inequalities hold P-a.s.

IP Zt 7'Yt+1 (St) < EQ [ t_;_'71t+2 (StJrl) —(vt+1,ASt+1) |f5i| (48)

< esssup EQ|T [ tff” (StH) _(%“’Ast“)]fts] )
QeRN
The right-hand side of (48) does not depend on Q. This implies that for any
v, € DY, the following inequality holds P-a.s.:
P

— N
I, i (Sé) < esssup EQ |T [ tff“ (StH) ~(t1,A5041) |]:S] (49)
QeRN
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— — N
Note that: (1) for any 7Y, € D;\,, we have V; < If’%“ (S§) P-a.s.; (2) it

follows from the definition of essential infimum that for any € > 0, there exists

—e,N —c
Ve = £ {’ys seft+1,..N} € D} |, where 7% is an F_;-measurable d-dimensional

vector ¥y (Whlch depends on ¢) such that for any ¢t € Vg,

75N

Vt>Im+1 (St)—g P —a.s.

Thus (49) can be rewritten as

J— —,N
Vi < [E’%H (St) < esssup E® tﬁt“’ (StH) _(’YtJrl,AStJrl)‘]:;S
QeRN
< esssup E® [(Vtﬂ + 5) 6—(%+1,A5t+1)|53} <
QeRn
< esssup EQ [V [_H— e~ 7t+laASt+1)|‘/—.'S:|
QeRN
+¢ esssup EQ [e_('YtJrlaAStH)‘f;S] ‘ (50)
QeRy

We consider the second term in the left-hand side of (50). As y441 € Dyyq,
we have for any t € Ny,

0 < esssup EQ [e”(r+0:85001)| F5] < o0,
QeRN

The constant € > 0 is arbitrary. Hence the following inequality holds for any
Yi+1 € Dt-l—l and t € Nli

V, < esssup EQ [VHle_(%“’Ast“HﬁS} . (51)
QeRN

As the left-hand side of (51) does not depend on ;.1 € Dy, 1, we obtain (47).
Inequalities (42), (47) imply recurrent relation (5). Obviously, V,|i—y =
efv(Se) This completes the proof of the theorem.
3.1.4. PROOF OF COROLLARY 1. (1) For any Q € Ry, we have

egs séRup EQ [Vte_(%ASt)LFf_J > EQ Wte_(%ASt)|FtS_J P—a.s.
ehn

Therefore for any t € Ny, v € D; and Q € Ry, the following inequality holds

essinf esssup E® (Ve ~nAS)| FS 1] > ess infEQ [Vie ~(n 88| S ]. P—as.
Y€D:  QeRy v€D:

The combination of (5) and of the last inequality implies (6).
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(2) The second inequality immediately follows from (5) and the definition
of essential supremum. This completes the proof of the corollary.
3.2. PROOF OF THEOREM 2. Let us prove that for any ¢t € Ny, we
have
Vi<e? P-as. (52)

We proceed by induction. It obviously follows from the conditions of
Theorem 2 that

Vilien < e,
To prove (52) it is necessary to show that if V;, < e, then V,_; < e for

any t € N;. Suppose that V; < e®. It follows from Corollary 1 that for any
v € D, we have P-a.s.

V,_1 = essinf ess sup EQ Wte—(%ASt)lﬂs_l] <
YE€ED:  QeRry

< esssup EQ [Vie (49| F5 .
QeRy
We can sharpen the last inequality because 0 € D;. We have P-a.s.

V-1 < esssup E® Wt|-7:ts—1] < e”.
QeRN

So, the main step of induction is proved, i.e., it is proved that (52) is true
for any t € V.
Now let us show that for any t € Ny,

Vi>e ™ P-as. (53)

We again proceed by induction, and it obviously follows from the conditions
of the theorem that B
Vilieny > e P—as.

Hence it is necessary to prove that if V;, > e, then V,_; > e~ for any
t € Ny. Suppose that V; > e, It follows from Corollary 1 that P-a.s.

V,_1 = essinf esssup EQ [V, e (25| F9 ] >
-1 = el Qe%RNp [_t | F; 1] >

> essinf EQ [Vte_(%ASﬂft{J > essinf EQ [e_cze_(V’ASt)|ft‘il} =
yEDy¢ yeDy

= e_CQegzli)r:f EQ [e_(7’ASt)|F£1} . (54)

We shall need the following notation. Let
Gq (t, S5 —7) 2 E® [exp {— (v, AS))} |F2 ]
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for any t € Ny, v € R% and Q € Ry. Gq (t, Sit, —7) is called the cumulant
of a random variable AS; with respect to a probability measure Q and the
o-algebra F; 1 (see [17], [18]).

Thence (54) can be rewritten as P-a.s.

Vi1 > e “essinf EQ [e_(%ASt)LES_l] = e “essinf eGQ(t’SfJ*l’_V), (55)

yeDy yeDy

where Q € Ry is arbitrary.

According to the conditions of the theorem, we have Rty N My # F. So
there exists a measure Q € Ry NMy such that for any v € D, the cumulant

satisfies the condition Gg (t,55"',—) > 0 and is a convex function of .
Hence it follows from (55) that

Vii1>e P-as.

Consequently, the main step of induction is proved. Also, (53) is proved for
any t € Nj. Thus the proof of item 2 of the lemma follows from (53) and
(54). The proof is complete.

3.3. To prove Theorem 3 we shall need two auxiliary assertions.

3.3.1.

Lemma 1 Suppose the following conditions are satisfied:

(1) Q € in N My;

(2) {Si}o<t<n is a sequence of d-dimensional variables, where for any
t € Ny variables AS,@ are linearly independent, i = 1,d;

(8) v is a nontrivial bounded d-dimensional vector.

Then it 1s Q-a.s. true that

Q ((%, AS;) > 0|‘7:t{1> >0, Q ((”Yt, AS;) < 0|ft€1) > 0. (56)

PrROOF OF LEMMA 1. According to conditions of the Lemma
the measure Q is a martingale one. Therefore for any 7 € R? we
have inequality 1 < eXp{GQ (t, S(t)_l,—'yg)} = ES [6_(%’A5t)|ft_1} Q-a.s.,
where Gg (t,Séfl, —71{) is a cumulant with respect to the measure Q. A
cumulant Gq is a convex eigenfunction. So, there exists v, € R¢ such that
exp {GQ (t,Sé_l, —’yt)} > 1 Q-a.s.

Note that Q-a.s.

e~ (1,A5:) — o—(11,A8:) [1{(%,Ast)<o} T 1{(%,Ast)zo}} <
< 6_(%’A5t)1{(7t»ﬁst)<0} + L.

Thus, 1 < E® [1 + e_(%’ASt)l{(%AgtKO}|]-'t_1} Q-a.s., which can be rewritten
as follows Q-a.s.

0 < EX [em 010, asy<op|Fea] - (57)
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Let us define Q(A) £ EQ1 4 (w) exp {% [—(%a AS;) = Gq (4, So s _%)] }’

i=1
where A € ff, is arbitrary. Obviously, Q ~ Q. Then due to Girsanov’s
theorem inequality (57) takes the form Q-a.s.

0 <exp {GQ (t’ Séil’ _%)} l;:‘Q [1{(%,A5t)<0}|ft—1} -
= exp {GQ (t, Sé_l, —"}/t)} Q [(’)/t, ASt) < 0|.Ft_1] .

It means that 0 < Q[(7:, AS;) < 0|F;_1] Q-a.s. As measures Q and Q are
equivalent, we have 0 < Q[(y, AS;) < 0|F—1] Q-a.s.

The same reasoning proves, that 0 < Q[(vy;, AS;) > 0|F;_1] Q-a.s. The
proof is complete.

3.3.2.

Remark 9 (1) Condition (2) of Lemma 1 is not a crucial one. Indeed,
suppose that for some moment t' € N; wvariables ASS), i = 1,d, are not
independent and conditional probability Q ((%, ASy) = O|.7-}7q_1) =1 Q-a.s.
As Ay is arbitrary, we have ASy = 0 Q-a.s. Obviously, the last equality means
that 3 = F5_, and Vy = Vy_1 Q-a.s. Hence moment t' might be skipped.
(2) Suppose the assumptions of Lemma 1 are satisfied and 7, =

Tt where v is a montrivial bounded d-dimensional predictable vector.

el
Then any Q € Ry N My has reqular version of conditional distribution

Q ((, AS;) < x| F2,). This and (56) means that for any t € Ny there are
positive constants cs and ¢y such that Q-a.s.

Q (_(’%h ASt) Z C3|7t|}ﬂ€1) 2 Cq > 0 (58)
3.3.3. Let us denote

d(t,v,w) £ esssup EQ [Vte_(%ASt)LFtS_l] : (59)
QeRy

where t € Ny, v € D; are arbitrary.

Lemma 2 Suppose the assumptions of Theorem 2 are satisfied. Then for
any t € Ny the following assertions are true:
(1) there are positive constants cs and cq such that Q-a.s.

CI)(t7 v CU) > c3eC4|7|_62; (60)

(2) there is version of the function ®(t,~v,w) such that for any w € Q this
version is convexr continuous function of 7.
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PROOF OF LEMMA 2. (1) From (59), Corollary 1 and Theorem 2 it

follows that for any v € D;,; and Q € Ry N My the following inequalities
hold Q-a.s.

q)(t,’)/,w) > EQ [Vt+1€—(7,ASt+1)|JT_;tS} > 2 EQ [6—(7,A5t+1)|‘/’_'tS} >
> e #EQ [e” OB as e | F] > (61)
> es1m2Q (= (v, ASp1) > esy|| FY) -

Inequality (60) follows from (61) and (58) (see Remark 9).

(2) From (59), Corollary 1, Theorem 2, properties of essential supremum
and because e~ ("% is convex it follows that for any t € N; the following
inequality is true P-a.s.

(I)(t>7a7w> < ozCI)(t,fyl,w) + (1 o Oé)(I)(t, '72;("})7 (62)

where a € [0,1], v* = avy; + (1 — @)v2, 71,72 € Dy.

Obviously, ®(¢,v,w) is B(R?) ® F-measurable random variable and is
finite P-a.s. for any v € D;.

Let us denote: (i) LY, = L' (R¥, B (R%), P) is normed space of P-a.s.
finite random variables;

(ii) £ £ £ (R", B (Rdt)) is normed space of measurable functions with
uniform norm.

Suppose reflection p; : L, — £7° is lifting [15], i.e. if ¢, € LY then:

(i) pe(pr) = 1 P-as;

(ii) if ¢¢(w) = 0 P-a.s. then for any w we have p;(¢p¢(w)) = 0;

(iii) p (Lygary(w)) = Lygary (w).

It is well known [15] that: (i) in this case lifting exists, (ii) ||p¢|| = 1 and
P? = Pt

Obviously, for any ¢t € N; and v € D; we have ®(t,v,w) € L. and
pe (P(t,v,w)) € £°. So, from (60) it follows that for any (¢,w) function
pt (P(t,v,w)) is convex non-negative function of 7. Consequently, for any
(t,w) it is continuous function of . The proof is complete.

3.34. PROOF OF THEOREM 3. From (58) (see Remark 9) and
Lemma 2 it follows that:

(1) for each ¢t and w function ®(¢,v,w) is a B (Rd)—measurable function
of v and

lim ®(t,v,w) =0 P-as; (63)
7|00

(2) for each t and « function ®(¢,~,w) is F°-measurable.

Note that from definition of essential infimum, Theorems 1, 2 and
definition of the sequence {®(t,v,w)},cy, it follows that there is minimizing
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sequence {%(i)1}k21 such that P-a.s.
e~ <V,= essinf esssup EQ [Vtﬂe_(%“’Ast“)U:ﬂ =
Yt+1€Dt+1  QeRy

: = —(.as
= lim esssup EQ |V e (% t“)]FtS < e,
k—o0 QeRN

(64)

We will prove Theorem 3 by contradiction. According to (64) this means
that there is no F; -measurable finite d-dimensional vector ~;,; such that (9)
is true. Consequently,

lim |73 = oo. (65)

Taking into account (64) and (63) we get P-a.s.

— ) Q |77 —(W(M ASt+1) S
e? >V, = lim esssup E¥ |V e \'*HV \Fr | =
k—oo QeRn (66)

: . (k)
= lim @(t,yt(_l?l,w) > lim cyelml—e = oo,
k—o00 k—o00
It is a contradiction, which means that our assumption (65) is wrong.
That is why from {fyt(i)l} k>1 it is possible to pick out converging subsequence

{’Vt(ﬁll)}lzl such that

* . k
Ve+1 = lliglo 'Yt(+11)- (67)
Obviously, 7/, is a FP-measurable d-dimensional vector. Indeed, suppose

B C R? is an open sphere. For any ¢ and w it is true that ®(¢,v,w) is
continuous function of v. So, we have

{vveBt= |J () {2tqw) <o(td w},

q€Q4NB ¢'€Q\B

where Q7 is a space of d-dimensional vectors whose components are rational
numbers.

Let us prove that v/, € D;1;. From Corollary 1, Theorem 2, Lemma 2
and the Fatou Lemma it follows that P-a.s.

l—o0

_ _ (kp)
e >V, > lim B9 | Vppe (0 ’Ast“)ms} >
Z EQ [thtle_(ﬁJrl’ASHl”ftS} Z e 2 EQ {e—('y;‘+1,ASt+1)|]:tS] )

From these inequalities it immediately follows that

e?2 > esssup EQ [e_(ﬁﬂ’ASt“) |fts]. The proof is complete.
QeRN
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34. PROOF OF THEOREM 4. From Theorem 3 we obtain formula
(10) for any ¢t € N; and Q € Ry. The measures Q and P are equivalent.
Therefore, recalling the remarks of Subsection 3.1.1 and using Girsanov’s
theorem, we rewrite (10) as P-a.s.

Vioy > EQ [V, 0P8I FS | = BF | ZLVie 0RAS0|ES | (68)
Zt—1

dQy

where 2z, = P, (w).

Let {g:},cn, be a sequence of random variables such that g; is an
arbitrary J;”-measurable bounded random variable and {z, 7} } ren, admits
the representation

Gt

B lFry) T o

2t = Zt—1

Obviously, {2:},cy, € 73] and for any t € Ny, the random variable z; is
FS-measurable and 0 < z; < co P-a.s. Therefore, combining (68) with (69),
we obtain

Vi E° [Qt’}ﬁl} > E° [gtvte_(ﬁ’ASt)‘]iil] P —a.s.

Hence, we have

% .
0>EP |:gt <_—t e~ (A5 _ 1> i 11 P—a.s. (70)

Since
exp{AInV,— (1{,AS)} —1—[AlnV; — (7,,AS)] >0 P—as.,
from (70) we obtain the inequalities P-a.s.

0> EP {gt [GAlnvt—w,ASt) —1— (AlnV,— (7/,AS)) + AlnV,—

— (7, ASONF L =2 B {g [AV, = (0, AS) ] [FEL }
Since ¢, is arbitrary, we have P-a.s.
~AC; & AV, — (vf,AS;) <0. (71)

It follows from (71) that the F7-measurable random variable AC} defined
by (11) exists for any ¢t € N;. It follows from (71) that for any ¢ € Ny, we
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have AC} > 0 P-a.s. Hence, C; > C} P-a.s. for any ¢t > s. It follows from
(11) and our remark that P-a.s.

N

Cy o = Z => [, A8) - AmV,] = (72)
>

=1

(v, AS) —InV iy +InVy.

=1

As InVy = fn (S.) from the last equality we obtain (12). This completes
the proof of the theorem.

3.5. PROOF OF THEOREM 5. According to theorem’s conditions &
is P-a.s. bounded, so for any Q € 9y expectation EQ¢ is also bounded,

consequently, sup E®¢ is finite. Thus there is sequence {Qk}k>1 with Qx €
QeRN

Ry for any k > 1 such, that sup ER¢ = hm EQx¢.
QeRN

For any A € F let us define A\(A) £ E Q) Obviously, ) is a probability

measure and Q; < A for any £ > 1. Hence for any k£ > 1 there exists random
variable 0 < X, £ dQ’“ called density of Q; with respect to A, E*X}, = 1 [18].
Then EQ+¢ = EAka, k> 1.

Suppose {Xj},>, is weakly relatively compact in L' (Q, F,\). In that
case the theorem of Eberlein-Smulian |3| guarantees existence of subsequence
{Xk,.},,>; With weak limit in topology of L' (€, F, ), i.e. there exists X €
LY (Q, F, \) such, that for any Y € L>(Q, F, \):

lim E*X,, Y = E*XY. (73)

m—0o0

We define Q*(A) £ E*X 14y, A € F. Equality (73) holds true for P-a.s.
bounded &, that is why

lim E*X), € = EF*X¢=EY¢ = lim EQmg, (74)

m—0oQ m—0o0

As {EQkf}k>1 has a limit, so {EkaE}m>1 has the same limit. Thus we have

sup EQ¢ = lim EQ¢ = lim EQmé = EXE. (75)

QEERN m—00

The proof is complete.
3.6. In this subsection, we prove Theorem 6.
3.6.1. To prove Theorem 6, we need the following lemma.
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Lemma 3 Suppose that the assumptions of Theorem 4 are satisfied. Then
the following assertions are true:

(1) N
0 <exp {fN (S =Y (. ASi)} <e? P—as; (76)

i=1
(2) for any t € Ny,

0< Ve A8 < g2 P —a.s. (77)

PROOF OF LEMMA 3. (1) We first prove (76). From (12) we obtain

Ve O~ = exp {fN (Se) — Z (7, ASZ-)} Q — a.s. (78)

i=1

As e <Vy<e?and Cf > 0 Q-as., (76) follows from (78).
(2) Let us prove inequality (77). The left inequality in (77) is obvious.
So we have to prove right inequality in (77). From (11) it follows that

%6_(7?’Ast)+AC? = 1 Q-a.s. for any t € N; and Q € Ry. We know that

ACY > 0 Q-a.s. So, from the last equality it follows that Ve (HAS) <V,
Q-a.s. That is why from Theorem 2 the right inequality in (77) follows. The
proof is complete.

3.6.2. PROOF OF THEOREM 6. Now let us prove equality (14). Let

& (W) = 1 Ve~ 00A5)

where 7,_; is an fts_ ;-measurable bounded random variable, (Vt,f'ts) +eNg

satisfies recurrent relation (5) and (v;, 7, ) ren, 1s defined by (9). It follows
from _the second assertion of Lemma 3 that for any ¢ € Nj, the V,
and V,e~0i45) are F° measurable bounded random variables. Consider

sup EQ,_1V,e~0525)  On the one hand, the properties of the essential
QeRn

supremum and the conditional expectation EQ [e|F; ;] and also Theorem 3
imply that

sup EQn_ Ve 0625 = qup EQ,_,EQ Wte_(#’ASt”ftS—J =
QeRyn QeRN

= sup E9n,_; esssup EQ [Vte_(ﬁ’Ast”fts_J = sup EQn,_1V,_;. (79)
QeRn QeRN QeRry
Further, taking (75) into account, we obtain the following equalities

sup EQ77t—1Vt—1 = EQ*nt—lvt—lv (80)
QeRy
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sup E9n,_q esssup EQ [Vte_(V;’ASt)]ff,l} = (81)
QeRy QeRN

= E¥ {Th—1 ess sup EQ Wte_(V?’ASt”FtS_J } .
QeRy

Since the random variable n;_; is arbitrary, it follows from (79), (80), and

(81) that for any ¢t € Ny,

Vi1 = esssup EQ [V,e 0029 F ] Q* —as. (82)
QeRN

On the other hand, (74)-(75) and the properties of the conditional
expectation imply the equalities

T —(~F . (n) — s
sup EQT]t_1Vt€ (A8 — 1im EQ N1 Ve (v, AS) _
QeR N n—00

a5 4Q™
)

— B Ve 00850y () = B TVye 000850 — (33
By B [V 08| FS ]
Using (79), (80) and (83), we obtain

= lim E*p_1 Ve (w) =
n—oo

EVmo1 Vi = E¥n EY Wte_w’ASt”fts_J : (84)
As ;1 is arbitrary, taking (84) into account, we obtain, for any ¢ € Ny,
Vi1 =EY [Vte*w’ASt”ftS_J Q" — a.s. (85)

Obviously, V|i—x = exp{fx (S.)}. This and recurrent relation (85) imply
equality for any t € N;

N

Vi=EY [eXp{fN (S)— 2 w;:ASi)}Iff] = 7R (S Q@ —as.

i=t+1

Thus, equality (3) is proved. So, there are the worst-case measure Q* and
the minimax strategy {7, }icn, , i.e. there exists the minimax bistrategy
(Q*, ). The proof is complete.

3.7. PROOF OF COROLLARY 2. For convenience of presentation let
us denote Gy £ {w € Q: AlnV,(w) = (7, AS)(w) — AC; (w) }. Obviously,
G is a FP-measurable set. From the proof of Theorem 5 it follows that there
are sequence {Q™},>1, Q™ € Ry, and probability measure Q* such that
for any A € Fx we have Q*(4) = nh_)nolo Q™ (A). According to Theorem 4
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QM (G,) =1 for any n > 1. Hence Q*(G;) = lim Q™ (G,) = 1. The proof is

n—oo
complete.

3.8. PROOF OF THEOREM 7. (1) Suppose that assertion (1) holds.
Let us prove assertion (2). Let Q* be the worst-case probability distribution.
We must prove equality (14). Let us assume the converse, i.e., suppose that
there is t € N; such that the following inequality holds:

Q {Vio1 > EY [V,e 025 F5 11 > 0.

_ * %N
Therefore, V; > ItQ 7R (SE). This means that Q* is not the worst-case
measure. This contradiction proves the assertion.

(2) Suppose that assertion (2) holds. Let us prove assertion (3). Let us
t—1

multiply both sides of (14) by exp {— > (v, ASi)}. Taking the definition
i=1

of the sequence {ﬁt,}"ts } N into account and using the properties of the
conditional expectations, we conclude that

t—1
Hy1 = Virexp { NG As»} -

1=1

¢
Viexp { Z (7 AS@')} |]:tSl] = EY [ﬁt'fts—l} Q—as.

— E¥

i=1

It follows from Lemma 3 and Theorem 3 that ER" i, < co. Hence, the sequence
{x,, ]:ts}teNo is a martingale with respect to Q*.

(3) Suppose that (3) holds. Let us prove (1). It follows from the definition
of the S-estimating sequence {Et, FP } and the assumptions of the
theorem that Q*-a.s.

N
(a) Fiy = exp {fN COMPIE ASZ-)};
(b) iy = Vo = essinf esssup ISM{V (S0);

’Y{VED{V QeRN
(c) {F, ftS}teNo is a martingale with respect to Q.

tENy

Therefore, we have (14) which implies

_ * %N
V=1 " (8) Q —as. (36)
By Remark 4 for any ¢t € Ny and for any measure Q € Ry, we have

f, > EQ [ﬁt+1|fts} Q—as. (87)
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Hence, it follows from (10), (86), (87), Remark 1 and recurrent relation (38)
that for any t € Ny and Q € Ry, we have

Q* 7N

I (Sé) = Vt > EQ [Vt_i_l@_(ﬁﬂaﬁstﬂ)'fts] >

* N * * N
> EQ [Iﬁﬁf“ (Seth) e_(7t+1’ASt+1)|]—"tS} = [ (S5) Q —aus.

Thus, the Q* is the worst-case measure. This completes the proof of
Theorem 7.

3.9. PROOF OF THEOREM 8. The proof follows from the
Assertions 1-7.

§4. Proofs of Theorems 13—20

4.1. In this subsection, we prove Theorem 10, which establishes the
relationship between problem (2) and the problem of an European option
pricing in an incomplete (1, SW, ..., S@)-market.

4.1.1. PROOF OF THEOREM 10. It follows from Theorem 3 that
there is a strategy {7 },cn, € D7 satisfying (9). Therefore, by (18), for each
t € Ny, there is a predictable sequence {3} },.y, such that

ABf = — (St—l, A%;,k) ) ﬁﬂtzo = f. (88)

The value of 3; will be found later. So, we have just constructed a self-
financing portfolio 7* = (8}, 7}),cn, Therefore, according to (17), for any
t € Ny, the capital X[ of the portfolio 7* is defined by the formula

X7 =B+ (.5 (89)
Hence, for any ¢t € Ny, the following equality holds Q-a.s.:
AXF 2 XF - XF, = A+ A (] S). (90)
Combining (90) with (88), we obtain
AXT = (vi,AS) Q—as. (91)
Theorem 4 (see (11)) yields that for each t € Ny,
(v, AS) = AlnV, + AC; Q—aus., (92)

where (C}, F),cp, is such that
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(i) G5 =0;
(i) for each t € Ny and Q € Ry, the inequality ACy > 0 holds Q-a.s.
Combining (91) with (92), we obtain

AXT —InV,—C;) =0 Q—as.
The last equality yields for any t € Nj,
X" -V, —Cr =X —InVy—Ci Q—as. (93)
Let ) o
Xy =InVy Q—as. (94)

Then, it follows from (93), (94) and equality C§ = 0 that for any ¢ € Ny and
Q € Ry, o

X" —Cr=lnV, Q—as. (95)
Since (C’;“,fts)teNO

from (19) that )?f " = X[ — C7 is the capital of the self-financing portfolio
7* with consumption C; at time ¢ € Ny. Also, from (95) we conclude that

is a nondecreasing sequence such that Cj = 0, it follows

)?f " = InV, is the capital of the self-financing portfolio with consumption
(7*,C*). As XJ" = InV,, without loss of generality, we can assume that
Bi =InVy and g = 0.

It follows from Theorem 4 (see (11)) that X’}{[ =InVy = fn (S,) Qas.
with respect to any measure Q € Ry. Hence, we have

N
fu(S)=mVy=WVo+) (y,A8)-Ci Q—as.

t=1

So, the self-financing portfolio with consumption (7*,C*) is a perfect
superhedging portfolio with consumption.

It remains to prove that (7*,C*) is the minimal perfect superhedging
portfolio with consumption. To prove this, we need the following lemma.

4.1.2.

Lemma 4 Let fy (S.) be a bounded Fy-measurable contingent claim, and
let (m*,C*) be the perfect superhedging portfolio with consumption defined by
(9), (11), and (18). We assume that (7, C') is any other perfect superhedging
portfolio with consumption, i.e., (mw,C) # (7*,C*). Then for any t € Ny and
Q € Ry, the following inequality holds Q-a.s.:

1> exp {)/(\'f — )/(\'ZT} . (96)
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PROOFOF LEMM A 4. It follows from Theorem 4 and the assumptions
of the lemma that the contingent claim admits the following representations
with respect to any measure Q € Ry:

N
fn(Se) = XI+ > (,AS) — (Ch—Cr) =

1=to+1
R N
= XZ:) + Z (’}/Z,ASZ) — (CN — Cto) Q — a.s.,
i=to+1

where ¢y € Ny is arbitrary. Hence, we have the following equality with respect
to any measure Q € Ry:

N N
XZB* o XZB o Z ACT = Z (Vi — i, AS;) — (97)
i=to+1 i=to+1

—(Cy —Cy) Q—as.
Since Cy — Cy, > 0 Q-a.s., it follows from (97) that

N N
X=X = > ACT < Y (i—7.AS) Q-as. (98)
i=to+1 i=to+1

For any t € {to + 1,..., N} the capital of the perfect superhedging portfolio
with consumption (7%, C*) allows the representation X = InV; Q-a.s. So,
use of (14) obtains

AXT = (77, AS) — ACF Q —as.
Therefore, combining (98) with the last equality, we have

N
X -Xr+ Y [A)?gf* — (v, ASZ-)} <0 Q- as

1=to+1

Hence, it obviously follows that
A~ A~ N A~
exp {X;;* X+ Y [AXZT* - (%,ASZ-)]} <1 Q-as (99

Now let us calculate the conditional expectation EQ [e|F7] of the random
variables at both sides of (99) with respect to any Q € Ry. Recall that
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)A(ZB =InV,, X% = fy (S.). Using (1), we obtain the inequality Q-a.s.

- N
1 > exp {Xt’g — XZ;} EQ exp {X}{: — lnvto — Z (’Yi,Asi)} ff;] =
L 1=to+1
exp )A(ZB — )?Zg i N
— { _ }EQ exp § fn (Se) — Z (73, AS;) Ifi?l =

Vi i=to+1

mev_H t
Tt T Ito ’ (SOO>

= exp {Xto —Xto} % .
to

As the left-hand side of the last inequality does not depend on Q € Ry,
for each Y, € D}, |, we obtain the inequality

Q?’Yt]\of.l,-l to
esssup I, (5%)
QeRy

1> exp { X7 - X7} Q- as. (100)

Vio

In turn, inequality (100) implies that for any ¢ € Ny and Q € Ry, the
following inequality holds Q-a.s.:

: QW%H to
essinf esssup [ (S3°)
7%4—161)%4-1 QeRN

Vi

1Zexp{)?g)*—)?g} :exp{)?gg*—)?t’;}.
This completes the proof of the lemma.
4.1.3. Here we complete the proof of Theorem 10. Now let us prove that
a perfect superhedging portfolio with consumption (7*, C*) is the minimal
one. We assume the opposite, i.e., we assume that there is a moment ¢y € Ny,
a measure Q € Ry, and a perfect superhedging portfolio with consumption

(7, C) such that Q ()A(t(:) > X’t(:)) > 0. On the other hand, (96) implies
that Q ()?t(gf) > )?t(gr)) = 0. This contradiction proves that the perfect

superhedging portfolio with consumption (7*, C*) is the minimal one. The
theorem is proved.

42. PROOF OF THEOREM 11. (1) It follows from Corollary 1 and
Theorem 6 that for any v € D;, the following inequality holds Q*-a.s.:

Vi < esssup ES [Viem 09|77, = (101)
QeRN

= EQ* [Vte—(’y,ASt)’FtS_J .
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Suppose that v = v/ + h7,, where h € (0,1] is arbitrary and 7, is an F; -
measurable vector. Without loss of generality, we can assume that [7,| < 1.
Then (101) yields the inequality Q*-a.s.

V., < E¥ [Vte—(vz‘,Ast)e—h(%ASt)| 7 = (102)

= V,E¥ [exp {Alnvt - (v, ASt)} e_h(%ASt)LES,J )
It follows from Corollary 2 that
AV, — (v, AS) = —AC <0 Q" —as..
Therefore, (102) can be sharpened as follows Q*-a.s.

1 < EY [exp{-AC; = h(7,,A8)} |FL,] < (103)

EQ* |:6—h(7t,ASt)|ft5;1:| )

IA A

Using the Newton-Leibniz formula, we can rewrite (103) for any h € (0, 1]
as

h

1 _
0 < EQ E/%a“”w“”dﬂﬂﬁ = (104)
0

h
. 1 -
= —EY (7. 48) 5 / e A G| FY | QT - aus.
0

Passing to the limit as A — 0 and using Fatou’s lemma, we obtain Q*-a.s.

Vv

0 = ImE* | (7, AS)

SRS

h
/ e_u(it’ASt)du|ES;1
0

h
e L[ e s o
> B (7 A8ty [ eSS | — B [(7,48) 7S]
0

Since 7, is arbitrary, we obtain
EY [AS|FL] =0 Q —as.

Therefore, the sequence {S;, i}, N, 18 a local martingale with respect to the
measure Q*. Thus, Q* is a martingale measure. This completes the proof of
the theorem.
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4.3. PROOF OF THEOREM 12. On the one hand, Corollary 2 implies
that for any ¢ € Ny, the probability Q* {AC; > 0} = 1. Therefore, for any
t € Ny, we have

1—e 2% >0 Q" —as. (105)
On the other hand, Theorem 6 and (14) imply that for any ¢ € Ny, we have
E¥ [1—e 2% |F,] =0 Q —as. (106)

Combining (105) and (106), we obtain that for any ¢ € Ny,
ACF =0 Q" —as. (107)

Since C§ = 0, equality (107) implies that for any ¢ € Ny, the probability
Q {C;=0}=1.

Let us prove (30). From Theorem 4 (see(11)) and (107) it follows that for
any t € N1, we have Q*-a.s.

Alnvt = (’}/:, ASt) .

We sum up last equalities gives Q*-a.s. for all t =0,...,k < N:

k
Vi=lVo+ (7, AS) (108)

=1

In particular, as In V, |,y = fn (S.), we have Q*-a.s.

N
Vilen = fx (Se) =InVo+ > (77, AS)) (109)

i=1

Let us calculate the conditional expectation EQ [e|F5] for both sides of
(109). The measure Q* is a martingale measure. Hence we have

InVo=EY [fn(S.) 7]
This and (109) imply (30). This completes the proof.

Remark 10 Suppose martingale Vi, Foien, admits

decomposition (108) with respect to measure Q* belonging to closure of

a set Ry (in the topology of weak convergence for probability measures). It

easy to see, that triplet (Q*,WI‘N,VO) is a solution of problem (2). Indeed,
N

(109) is equal to: nVy = fy — > (7F,AS;)) QF — a.s. Take exponent and,
i=1

after that, conditional expectation EX [-|F5]. So, we have (3) from the

definition of the solution for the problem (2).
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4.4.

Remark 11 Let us consider (2, F,P) and the set of equivalent (to P)
probability measures R. Then Dirak measure for any w € € belonging to
support of P belongs also to the closure of R. Indeed, if support of Q, is
a closed neighborhood of & with radius % and {aptn<i: o > 0, oy T 1
while n — oo, then Q, = a,Q, + (1 — a,)Q belong to R for any n > 1
and converges weakly to Dirak measure of & (i.e. E®"g(w) — g(@) for any
bounded continuous g ).

PROOF OF THEOREM 13. Suppose there exists solution of
problem (2), namely, triplet (Q*, o ,VO). It is worth to mention, that non-
redundance of initial (1,S)-market (with respect to P) guarantees, that it
will be non-redundant with respect to the worst-case measure Q* (might
be proved similarly to Corollary 2). Hence, for any ¢t € Ny, the support of
regular martingale conditional probability Q* [-|ft5 } consists of at least d+ 1
elements. If the supports above consist of d + 1 each, we have assertion of
the Theorem.

Else, let us consider discreet function of sets Q specified by:

(1) equality Qo(A) £ Q*(A) for any A € F5:

(2) set of variables {AZy;, Dt j}een, 1<j<dat1, Where (i) for any ¢ € N,
elements of the set {AZ;;}ien,1<j<d+1 are an affine-independent Fo -
measurable random variables belonging to the support of regular conditional
probability Q* [-|F?,] (if specified by Q) such, that for any ¢ € N; the
following system (with respect to d-dimensional v and 1-dimensional z) is
incompatible:

(AZyj,y) > —2,—2>0 1<j<d+1,; (110)

(such a set exists because: (a) support of Q* [-|F;°] has a full basis; (b) if the
system for j € {1,...,d} is compatible, then Lemma 1 guarantees existence
of such AZ; 441, that (AZy441,7) <0).

(ii) for any t € Ny elements of the set {p; ; hen, 1<j<a+1 are defined as the
only solution for the problem:

d+1
D hiDiy =0, > p=1. (111)
Jj=1 i>1

Note, that from the theory for systems of linear equations it is known [14],
that system (111) has non-negative solution, if and only if (110) is
incompatible.
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Thus, pr; 2 Q(AS; = Aw,|FE,), t € Ny, j = 1,...,d + 1. Note,
that constructed measure Q belongs to close of My in topology of weak
convergence of probability measures (see Remark 11).

As {AZ}eni1<j<a+1 18 a subset of the support for regular
conditional worst-case probability Q* [-|F,], t € Ni, so (7}, Ady;) =
hlvt(SO, ceey St—b St—l + Ai’t,j)a j == 1, ,d+ 1.

Now, according to Remark 10 triplet (Q,vi‘N,%) is a solution for

problem (2) in non-redundant (1,S5)-market, where regular conditional
probabilities Q (-|Ff_1), t € Ny, are discreet and their supports consist of
d + 1 affine-independent predictable variables.

4.5.PROOFOF THEOREMS 14 AND 15. The assertions follow from
Theorems 10-13.
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Uenmpanvuwiii sxonomuko-mamemamuyeckuil uncmumym PAH
2HayuoHanvbuwlil ucciedo8amenbCKull ynusepcumem « Boiculas wkona 3KOHOMUKUY

[Moctynuna 20.10.2019

B crarke nocTpoeHa Moziesnb IeHO00pa30BaHus Il EBPOIEICKOro ONioHa HAa MHOTOMEPHOM
HETOJIHOM pBIHKE 0€3 TpaH3aKLMOHHBIX U3JEPKEK C AUCKPETHBIM BpemeHeM.C Hadaja pac-
CMOTPEHA BCIIOMOTATEeIbHAs 3a/1a4a 10 HAXOXKACHUIO BEPXHETO rapaHTUPOBAHHOIO 3HAYCHUS
0KU/1a€MOT'0 3HAYEHMsI PUCKa, IKCTIOHEHIIMAIBHO 3aBUCSALIETo OT Jedununra kanurana. Bepx-
Hee TapaHTHUPOBaHHOE 3HaYCHHE MPEACTaBIsAeT CO00H MUHMMAKCHOE 3HAYEHHE 0XKMIAeMOT0
pucka. [lepBoii OepeTcst BepXHssi I'paHb 10 MHOKECTBY SKBUBAJIEHTHBIX BEPOATHOCTHBIX MEP,
a 3aTeM — HIDKHAS IPaHb [0 MHOXKECTBY caMo(UHaHCUpyeMbIX nopTderneil. B cTarbe Halife-
HBbI YCJIOBHSI CYIIECTBOBaHUS MOPT(HENsA, Ha KOTOPOM JIOCTUTAETCs HMXKHAS I'paHb. DTOT pe-
3yJbTaT MO3BOJIMII MOCTPOUTH 0000IIEHNE ONIIMOHAIBHOTO Pa3JIoKeHUs! (PyHKIUU BBIILIATHI
OMIIMOHA. 3aT€M IOIYUYEHBI YCIOBUS CYLECTBOBAHMS BEPOSATHOCTHOM MEPBI, NOCTABIISIIOLIEH
MaKCHUMYM OKHJIa€MOMY 3HAYEHMIO PUCKA. DTa MEpa OKa3ajJach MapTUHTAIIBHON U JUCKPET-
HOM, HO B 00IIIeM clyyae OHa He MPUHAAJIECKHUT MHOKECTBY SKBUBAJIEHTHBIX BEPOSTHOCTHBIX
Mmep. HakoHen, nokasaHo, Kak IOJIYYEHHBIE PE3YyibTaThl AJI1 BCIIOMOIaTelbHOM 3a1a4M I0-
3BOJISIIOT MOJTYYHUTh SIBHBIE (POPMYJIbI AJIsl IEHBI €BPONEWCKOro OMIIMOHA HA HETOJIHOM pPhIHKE
0e3 TpaH3aKLUMOHHBIX M3/epkKeK. Bo BTOpoi yacTu cTaThu NMpHUBEIEHBI MPUMEPHI MoJeseh
[IEHOOOpa30BaHUs €BPONEHCKOro ONMIIMOHA HA PBIHKAX C OJJHUM PUCKOBBIM aKTHBOM: KOHEU-
HOTO U C KOMIAKTHBIM HOCUTEJIEM 0a30BOI BEPOATHOCTHON MEpBHI.

Knrouesvie cnosa: esponetickuii onyuon, xeoxcupogarue, MUHUMAKCHbIU nopmghenv, Heno-
HbLLL PLIHOK, ONYUOHANbHOE Pa3NodiceHue, npeocmasienue, hyHKYus pucka.
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