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Introduction.

This is second part of the paper. Here general results of the first part are
implemented to design pricing models for special cases of European option
in one-dimensional incomplete final market and compact (1, .5)-market (both
with discreet time and without transaction costs). The results are stated in
sections 5 and 6. Particularly, in section 5 we construct superhedging and
minimax portfolios for incomplete final (1,S)-market, specifies by relation
(1). Here recurrent relation (5) from Theorem 1 of [3] is used to state, that the
upper guaranteed value is a Markov random function (Theorem 16), and to
find explicit formulas for one-step transition probabilities of random sequence
(1) with respect to the worst-case measure Q*. Example of calculation for
European option in incomplete one-dimensional compact (1,.5)-market is
presented in section 6.

§5. Minimax hedging portfolio of a European option in a finite
incomplete (1, S)-market

The aim of this section is to construct the minimax hedging portfolio of a
European option in a finite (1, S)-market. Throughout this section we assume
that, with respect to a basic measure P, the returns of the risky assets are
represented by a sequence of independent and identically distributed random
variables with finitely many values.
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5.1. In this subsection, we introduce a finite (1, S)-market.
Let (QF,(F),en,-P) be a stochastic basis. We assume that
{St,}"ts } ren, 18 a one-dimensional sequence of random variables defined on

(Q,f, (E)tGNO,P) such that, for each t € Ny, this sequence admits the
representation
Si =81 (1+pt), Stle=o = So >0, (1)

where Sy is nonrandom and {p;}, , is a sequence of random variables. From
the economic standpoint, p; is the return of the risky asset at the moment
t € N;j. Suppose that 0 < Sy < ¢5. Let us also assume that the sequence
{pt}ien, satisfies the following conditions.

Conditions (p):

(1) {pt},en, s a sequence of independent and identically distributed
random variables;

(2) for any t € Ny, the random variable p, takes values in the set T’
{ai,...,a;} with probabilities pi,...,p;, where p; = P(p, =a;), i = 1,1
moreover,

(a) 2 <1< o0;

(b) inf a; > —1, sup a; < o0;
1<i<l 1<i<l

(c) there isno i € {2,...,1} such that a; = 0;

(d) there are j,k € {1,...,l} such that a; <0, a; > 0.

It follows from (p) that

(1) p; is an [-valued random variable with multinomial distribution such
that it admits the representation

l
pr = Zail{pt:ai}a
=1

L

_J L op=ai
where 1¢,,—q,) = 0, pta’
(2) without loss of generality, we can assume that —1 < a; < as < -+ <

a; < 00;

(3) for any t € Ny random variable S; > 0;

(4) the sequence {S;}, .y, defined by recurrent relation (1) is a
homogeneous Markov chain with respect to the basic measure P.

5.2. We need the following notation and remarks.

Clearly, the introduced (1,S5)-market without transaction costs is
incomplete for [ > 3.

Let random sequence {p;},.y, satisfy conditions (p) and RE; be a set
of probability measures on trajectories of this random sequence. Obviously

3‘3?{,’! #+ &. For any P and Q € %ﬁl\,’l we define p; £ P (pr = a;), q; £2Q (pr = a;).
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Conditions (%%71):

(1) with respect to any measure Q € R, random variables {p;},.y, are
independent and identically distributed;

(2 )1fP Qe %Nl,thenforanyz’ e{l,...,l}wehave 0 <p; < 1,0 < ¢; < 1,

sz—z%—l

IfP Q € %sz then for any ¢ € {1,...,0}, 0 < p; < 1,0 < ¢ < 1,

and Zpi = Z ¢; = 1. In this case, the Radon-Nikodym derivative of the
i=1 i=1
probability measure Q with respect to the probability measure P allows the

representation
N

d l o1
d_?)(pla"pr H(QJ> { }

Jj=1

(see [6]).

Note that in this case R . 1s a convex weakly compact set.

Let ¢ : RT — R! be a bounded borelean function denoted by ¢ (z).
Assume that the contingent claim has the form ¢ (Sy) = ¢ () |z=sy -

In this section, we consider the problem of constructing the minimax
hedging portfolio for the European contingent claim ¢ (Sy) with a time
horizon N in the introduced incomplete finite (1,.S)-market.

Obviously, Theorems 10-15 of [3] hold in this case. Therefore, there
is a probability measure Qf with respect to which the (1,.5)-market in
consideration is the worst-case complete one. However, results of [3| does
not give any explicit formula for the one-step transition probability for the
sequence <St7‘7:t)teNo with respect to the measure Q*. Hence, to find the
explicit form of these probabilities and to construct the minimax hedging
portfolio, we consider recurrent relation (5) from [3] (with our assumptions
taken into account).

5.3. In this subsection, we consider recurrent relation (8) from [3| with
the above remarks taken into account.

By Vi we denote the F°-measurable random variable

N
Vi 2  inf sup EQ [exp {@(SN) — Z ’yiASZ} ]-"tS] : (2)

7t+1EDt+1QE§Rd i=t+1

A reasoning similar to that used to prove Theorem 1 in [3] shows that, in
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. —l : :
this case, the sequence {Vt, F? } satisfies the recurrent relation
teN1

—l : —
V., , = inf sup E® [Vte”stlpﬂfts_l]
yeDy d
QeERY

—l
Vt|t:N — e@(SN).
The following theorem is the main result of this section.

Theorem 16 Suppose that conditions (p) and (R%,) hold and the
sequence { Sy, F;'} satisfies recurrent relation (1). Let ¢ (x) be a bounded
borelean function. We also assume that Vi defined by (2) satisfies recurrent
relation (3).

Then the following statements are true.

(1) Dy =R for any t € Ny.

(2) There is a borelean function Vﬁ (x) on Ng x RT ranging in RY such
that for any t € Ny, we have Vi = Vi () |z=s, P-a.s.

Moreover, for any t € Ny and x € R, the function Vi (x) satisfies the
recurrent relation

te Ny

( l
Vi, (@)= inf sup (SVie s aner )

—l
\ Vt|t:N = ecp(x)

(4)

PROOF OF THEOREM 16. (1) We prove that for any ¢t € Ny, the set
D, = R!. It is sufficient to prove that for any ¢t € N; and v € R?,

sup EQ Vie”st‘”’ﬂfts_l} < oo P-as. (5)
QeRY,

Note that (1) if sup |¢ (z)| < ¢g, where ¢g > 0 is a constant, then for any
z€R!
t € Ny,
0< V., < e, (6)

The reasoning we used to prove inequality (52) in [3] (see the proof of
Theorem 2 in [3]) is just as good for inequality (6). Therefore, the proof
of (6) is omitted.
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(2) Representation (1) implies that for any ¢ € Ny, the random variable
S; admits the representation

t

Se=S [[(L+p). (7)

=1

If 7 2 o {Sy,p1,...,p:}, then (7) means that for any ¢t € Ny, F° = F’.
Further, it follows from (7) and conditions (p) that for any t € N, there is
a constant c¢; > 0 such that

0<S <ecs(14+a) <er (8)

Consider EQ [Vie(%ASt)LFtS_l], where t € N, Q € R}, and v € D, are

arbitrary. Using Dynkin—Evstigneev’s lemma [2], we obtain

0< EQ [Vie_’)’st—lptLF'tS_I] — EQ [Vie—vmpt|fil]

(9)

The fact that {p;},c, is a family of mutually independent random variables

=51

with respect to any measure Q € R ;, inequalities (6) and (9), and conditions
(p) imply that for any ¢t € Ny and z,v € R!, the inequalities hold

[Pl ] cow oz =

— ¢ EQe=72Pt — 06 : eI, < eslezlar ~
i=1
Formula (10) and conditions (p) imply inequality (5) for any v € R
Therefore, for any t € Ny, we obtain D, = R!.
Now we are going to prove that Vi is a Markov random function. This
means that there exists a borelean function Vi (z) on Ny x RT ranging in
R* and such that for each ¢ € Ny, there the representation Vi = Vi (@) |azs,

holds. To prove this, we shall need a few auxiliary remarks. Since V, is an
FP-measurable function, Borel’s theorem yields that for each t € Ny, there

exists a borelean function V; (x, ..., z;) defined on (RT)""" and ranging in
R*, where z; € RT, i = 0, ¢, such that

—1 ~
V,=Vi(xg,..., )

:L‘i:Si Z:()i,t :

Hence, it follows from (1), Dynkin—Evstigneev’s lemma |[2|, and conditions
(p) that for any t € Ny, Q € §R§i\u and v € Dy, the equalities hold

EQ Vie_’YStlptLFf_l] = EQ |:‘7;5 (507 RN St—17 St) 6_7St71pt|ﬂsi1 -
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— EQ [‘Z (S()a ceey St,]_, St—l (1 + pt)) G’Yst—lpt|]_';55;1:| _

= E° [‘Z (2o, ... w1, 21 (1 + py)) e_vmt_lpt|ft{1}

x;=S; 1=0,t—1

= EQ [‘N/t (o, s 21, -1 (1 +pt))€w_lpt] =5; -

!
= Z Vi(xo, ..oz, 21 (1 4+ a;)) e 7 1%g, =
i=1

x;=S5; 1=0,t—1

l
= Z Vi (Soy- -5 Si—1, Si—1 (L4 a;)) e 75 1% g, (11)
i=1
Formula (11) yields that for any ¢t € Ny and v € Dy,
sup €9 [Vie 5|72 ] = (12)
QeRY
l ~
= sup o Z Vi (Sos -y Sie1, Si1 (1 + a;)) e 75 1%g,,

O0<qg <1, i1=1]1 | =
!
> qi=1
i=1

Taking into account the above remarks and (12), we can rewrite (3) as

~

‘/t(SOJ" '7St—1) =
I r~
— inf sup E:PQG%V“,&;M&;N1+aQ)X

o< <1, i=T11 )"

I
Yog=1
=1

% 6_75}*1% Qi} )

Let us now prove that Vi is a Markov random function. At first, we will
prove that for any ¢ € Ny, there is a borelean function Vi () ranging in
R* denoted by Vi () and such that Vi (S)) = Vi (x) |=s, satisfies recurrent

relation (13). We proceed by the backward induction. Since Vi|t: N = e?5N)
our assertion is true for ¢t = V.
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Suppose that Vi = Vi (S¢). We must prove that Viq = VLI (Si-1).
Recurrent relation (13) yields that

I
Vi_l = inf sup ZVﬁ (S (1 + ay)) e ot-1%g,,

o 0<g<l, i=L1 )=

I
Yog=1
=1

(13)
Since the right-hand side of (13) is measurable with respect to the o-algebra
0 {Si_1} generated by the random variable S; i, the left-hand side of (13)
is also measurable with respect to the o-algebra o {S;_1}. Therefore, Vi is a
Markov random function. Thus, recurrent relation (13) takes the form (4).
This completes the proof of the theorem.

5.4. In this subsection, we prove that the inner supremum and the outer
infimum in recurrent relation (4) are attained. We also prove the existence
of the unique martingale measure in the considered (1, S)-market.

The main result of this subsection is the following theorem.

Theorem 17 Let the assumptions of Theorem 16 be satisfied. Then the
following assertions are true.

(1) For any t € Ny and x € RT, the borelean function ani (x) satisfies
the recurrent relation

=l : I
nV,  (z) = 712]1{1{2?% InV,(z(1+a;)) —yxa; 14)

ani () |i=n = @ (2) .

(2) There are reflections i* : Ny x RT — I'; j* : Ny x Rt — T and
v Ny X RY — R respectively denoted by i} (x), ji (z) and ~; () such that

inf max ani (x (14 a;)) — fyxaz} = hlVi (x (1 + ai;(m))) — 7 (z) Tt (z) =

~yeR11<i<]

—1 .
=V, (z (14 aj:))) — 7 (&) Taj: @), (15)
moreover, for anyt € Ny and x € R :
(a) Qs (x) < 0, Aj* () > O,
(b) vf (x) can be calculated by the formula

—
(|| + @) V(v (14 apw))
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(8) Formula (14) can be rewritten as

{ 1“2;:1 (z) = (1 — g (2)) mes (2 (1+airw)) + g () ani (z (1+ aj;()))
In V(@) =y = ¢ (),

(17)
where

ai%k(l")‘ (18)

q (x) = :
t | @iz ()] + @5 @)

(4) There is a unique probability measure Q; with respect to which: (i)
the Markov random function {hl Vi (Sy) ,Fts} satisfies recurrent relation
teN,

(17), (i) the sequence (S, F;)

Lo Ne satisfying recurrent relation (1) is a
homogeneous Markov chain. Moreover, for each t € Ny, the random variable
pt takes two values: a;xs,_,) or ajx(s,_,) with the conditional probabilities

Q” (pt = Clz';;(st_l)|5t—1) =1- 6]: (St—1) (19)

(Q* (Pt = aj;(st,1)|5t—1) = q{f (St—l)) )

where ¢ (S;_1) £ ¢ (7) |o=s,_, and ¢ (v) is defined by (18), (i) the measure
Q* is a unique martingale measure, i.e., for each t € Ny,

EY (ol FE1) =0 (20)

PROOFOF THEOREM 17. (1) First, we note that for any ¢t € N; and
x € R, we have

I
sup o ZVﬁ (x (14 a;)) e ™™g =
O<qg <1, =1, ] i=1
I
> ¢ =
i=1
S
= max o th (x (1 4+ ay)) e ™4,

It is clear that

l
max > Vi(e(l+a))e g = (21)
quzglv 1= 7l7 =1

l
Zqi =1
i=1
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_ 7 ) p—za
= {g?gxl\/t (x(14a;))e :

Therefore, combining recurrent relation (4) with (21), we obtain

V. ()= infmaxV, (z (1 +a;))e 7™ (22)

YERI<i<I
Since for any t € N; and = € R, the function Vi (x) > 0, formula (22)

implies that In Vi (x) satisfies (14).
(2) By definition

Y (t,2,7) = max [ani (x (14 a;)) — fyxal} :

1<i<l

For any (¢, z), the function ¢ (¢,z,7) is the upper envelope [5] of the set of

functions {1nVi (x(1+a;)) — vmai} __ treated as functions of v € R Tt
=11

is easy to verify that for any (¢, ), the function ¢ (¢, x,v) is a continuous,
piecewise linear, convex, bounded from below function of v € R!. Moreover,

Y (t,z,y) — oo

|v|—00

Therefore, there exists a borelean function v* : Ny x RT — R! denoted by
v (x) such that

it (te,0) = v (a5 (7).

Let us find the explicit formula for ~; (x). It follows from the properties
of the function % (¢,z,7) and conditions (p) that for each (¢,z), there are
iy (x) and j; (x) ranging in I" and such that:

(a) a2y < 0 and

* SV *
o () () =V, (2 (1+ an@w)) =7 (2) 203 @), (23)
(b) Ajix () > 0 and

Y (ta, (1) =V, (¢ (14 a0)) =7 (2) 2age . (24)

It is obvious that for each (t,z), we have i (z) < j; (x). Formulas (23) and
(24) yield that v (z) satisfies the equality

ani (:c (1 + ai;(gj))) — 7 () 2aix () = (25)

— WV, (2 (1+ a;: () — 7 () 2aj: ().
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Solving (25) for ~; (x), we obtain (16).

(3) Applying (16), (24), and some elementary transformations to recurrent
relation (14), we obtain (17) and (18).

(4) Formulas (17) and (18) imply that there exists a probability measure
Q" such that: (i) {Si},cy, 18 an inhomogeneous Markov chain, (ii) for
any t € Ni, the random variable p; takes values a;(s,_,) and aj:(s,_ )
with the conditional probabilities Q* (pt = ai;(gt_1)|5t,1) =1-q (Si-1)
and Q* (py = ajr(s,_)|Si-1) = ¢ (Si—1), respectively, where ¢; (S;-1) =
q; () |z=s,_, and ¢; (x) is defined by (18). Hence, we have (20). Formula (20)
implies that the measure Q* is a unique martingale measure. This completes
the proof of the theorem.

5.5. In this subsection, we prove that the measure Q* constructed in
Subsection 5.3 is the worst-case measure.

Theorem 18 Let the assumptions of Theorem 17 be satisfied. Then the
probability measure Q* is the worst-case one.

PROOF OF THEOREM 18. Assume the opposite, i.e., assume that Q*
is not the worst-case measure. It follows from (13) that there is ¢ € Ny such
that

—l
T
1 = inf sup EQ | e 7% F2 | > (26)
TERIQend, | V.4
> inﬂ{ EY [exp {Aani — 'yASt} |]:t51} :
vER?

We have already proved (see the second assertion of Theorem 17) that there
is an F;_;-measurable random variable v} = ~7 () |,—s, , such that

inf EY [eXp {Alnvi - *VASt} |f§1} =

VER!
= EY [exp {Aani — ’yfASt} |.7:ts_1} :
Inequality (26) and the last equality yield
0> InEY [exp {Aani — ’y:ASt} |.7-—,§g_1] : (27)
Applying Jensen’s inequality to (27), we have

0> EY [A IV, — 7/ AS|FS 1} . (28)
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On the other hand, (20) imply the martingale property of the sequence
{St, Fi}1en, With respect to the measure Q*. Therefore, using (17) and (20),
we obtain

0=E% [AmVIFS,| = E¥ [AmT] — 9787 (29)

Comparing (28) with (29) we obtain a contradiction. Thus, Q* is the worst-
case measure. This completes the proof of the theorem.

5.6. In this subsection, we prove that the contingent claim admits an
S-representation with respect to the measure Q*. The main result of this
subsection is the following theorem.

Theorem 19 Suppose that the assumptions of Theorem 18 are satisfied.
Then any bounded contingent claim ¢ (Sy) admits an S-representation with
respect to the martingale measure Q*, i.e.,

N

o (Sx) = E¥ [0 (Sn) | Fo] + Y77 (Sic1) Sicapi, (30)

i=1
where ~; (S;_1) is defined by (16).

PrROOF OF THEOREM 19. Note that it follows from Theorems 17
and 18 that we can rewrite recurrent relation (14) as

1= E [exp {mnvi _ %*ASt} |;5~‘>‘_1} . (31)

— .
Let us prove that the random sequence {ln Vt,Ft} satisfies the
tENp

recurrent relation

{ Aani =7 AS, (32)

== = =
In Vt|t=0 =In V07 In Vt‘t:N = (SN)

with respect to measure Q*.
Indeed, on the one hand, it follows from (31) and Jensen’s inequality that
for any t € Ny,

0 = ImEY [exp{mnvf; —fy;‘ASt} F5 1] > (33)
> E¥ [A IV, — A AS|FS 1]

On the other hand, in the proof of Theorem 18, equality (29) was shown to
be true. It is clear that inequality (33) becomes the equality if and only if the
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random variable (A In Vi — ’yjASt) is 7 -measurable. Therefore, we obtain

recurrent relation (32). It is obvious that In Vi\tzo =1In Vé and In Vi\t:N =
¢ (Sn). Since Q* is a martingale measure, (32) yields S-representation (30)
and the equality

In Vg = E [p (Sy) | Fo)

with respect to Q*. This completes the proof of the theorem.
5.7. In this subsection, we construct the minimax hedging portfolio of an
European option in a finite (1, .S)-market.

Theorem 20 Let ¢ (Sy) be a bounded contingent claim. Suppose that the
assumptions of Theorem 19 are satisfied. Then the finite incomplete (1,5)-
market described by recurrent relation (1) is the worst-case complete market,
i.e., there exists a measure Q* and a minimax hedging self-financing portfolio
™ = (85,9 )ien, Such that:

(1) for any t € Ny, the predictable sequence (7;),cy, s defined by (16),
and 5 can be chosen to be zero;

(2) the predictable sequence (B}),cy, is defined by the recurrent relation

5: = 5;11 - St—lA’Y:7 5:’15:0 = 537 (34)

and 5 can be chosen equal to ané (So);
(3) the capital X~ of the portfolio 7 at any moment t € Ny admits the
representations

X =B+ S (35)
t
X7 =X] + Z Vi Si-1Pi, (36)
i=1

where X = ané (So);
X =V, (S),

where ani (S;) satisfies recurrent relation (17) and X% = ¢ (Sx).

PROOF OF THEOREM 20. Since the amount of the risky asset 7}
at any moment ¢ € N; is defined by (16), we can use the self-financing
condition (18) from [3] to obtain recurrent relation (34) for the amount of the
riskless asset 3. Therefore, the capital X7 of the portfolio 7 = (8;,7;),c No
allows representation (35) for any ¢ € Ny. Formulas (35) and (18) from |[3]
imply that AXT admits the representation
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Comparing (32) with (37), for any ¢ € N7, we obtain
AXT = AV, (38)

Let us choose X§ = ané. We use (38) to show that for any ¢ € Ny, it is
true that X7 = ani. Therefore, X% = anﬁV = ¢ (Sy). Thus, the (1,95)-
market described by recurrent relation (1) is the worst-case complete one, and
the portfolio 7* described by recurrent relations (16), (17) and (34) is the
minimax hedging portfolio with respect to the measure Q*. This completes
the proof of the theorem.

Remark 11 (1) Condition (ps)) can be omitted. This will lead to more
sophisticated formulas for the initial price of the option and for the portfolio
components.

(2) Suppose that ¢ = Q*(pr = a) = WI%’ p=Q"(p=0) = %’ where
—1<a<0<b< oo, are unique. Follouing the same reasoning, it is easy
to prove that such a binomial (1,S)-market is the worst-case one.

§6. An example.

In this section, we consider an example of calculating the minimax
hedging portfolio for a European option in a (1,S5)-market under the
assumption that the return of the risky asset is a sequence of independent
and identically distributed random variables with respect to a basic measure
P such that their probability distribution has a compact support.

6.1. Let {St,]-"ts } +EN be an adapted random sequence of prices on

a stochastic basis (Q,]—", (Ft)ien, P). Suppose that {St,]-"ts}teNo satisfies

recurrent relation (1). Assume that the random sequence {p;, F;’} je, has
the following properties with respect to the basic measure P:

(i) { ey FP } ren, are independent and identically distributed random
variables;

(ii) [a,b], where —1 < @ < 0 < b < o0, is the support of the probability
distribution of the random variable p,.

In this case, for any t € Ny, the random variable S; > 0 P-a.s. It follows
from the above assumptions that the sequence {S;},.y, is a homogeneous
Markov sequence with respect to the measure P.

Let ¢ : R™ — R! be a bounded borelean function denoted by ¢ (x). Let
¢ (Sn) = ¢ () |,=s, be a contingent claim.

By M [a, b] we denote the set of probability measures with support [a, b].
By definition MY [a,b] & M [a,b] x --- x M [a, bl. It is well known (see [1])

A\

-~

N
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that M [a, b] and M" [a, b] are convex compact sets (in the topology of weak
convergence o (MY, (MM)")).

Let RY be a subset of Ry such that: (1) the random variables {p;},-
are independent and identically distributed with respect to any measure
Qv € RS (2) any measure Qy € RN is absolutely continuous with
respect to the Lebesque measure.

Let us summarize some properties of the set 3%

(1) RS, # @ and R, € MY [a, b];

(2) RS is a convex weakly compact set;

(3) the sequence defined by (1) is a homogeneous Markov sequence with
respect to any measure Qy € Ry .

It is easy to verify that the above-introduced (1, .S)-market is incomplete.

6.2. In this subsection, we construct the minimax hedging portfolio of
a Furopean contingent claim with time horizon N in the above-described
(1,S)-market.

Note that, in this case, all assumptions of Theorems 5, 11, 13-15 from |3]
are satisfied. Therefore there exists: (1) the worst-case (martingale and
discrete) probability measure Q% such that the considered (1,.S)-market is
the worst-case complete one with respect to Qj; (2) the minimax hedging
portfolio 7. Therefore, Qy € (MY [a,b] \R%) N My is a unique (in a sense
of Remark 7 from [3]) martingale measure. Hence Q} is an extreme point of
this set. Thus, using Choquet’s theorem [4, ?|, we can determine the form of
the distribution of the random variable p, (with respect to the measure Q%)
and construct the minimax hedging portfolio 7*.

6.3. In this subsection, we prove that {a, b}N is the support of the measure
Qi
Since Qy € (I\\/JIN [a, b] \%f\,) N My, this is a product measure, i.e., Qy =
Qi x -+ x Qj, where Q] € M{a,b]. Since Qy is a martingale measure, we

N
have

Therefore, zero is the barycenter [4] of the measure Q. It is obvious that
the measure Q7 satisfies the assumptions of Choquet’s theorem [4, ?|. Hence,
the support of the measure Qj is a subset of the set of extreme points of
[a, b]. Thus, we see that the random variable p; takes the values a and b with
respect to the measure Qf with probabilities ¢* = Qf (p1 = a) and p* = 1—g*,
respectively. Since zero is the barycenter of the measure Qj, we see that
=3 +b|a|. Thus, we have proved that {a, b}N is a support of the measure

Q-
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6.4. We denote

N
V? 2 essinf esssup EQV [exp {gp (Sn) — Z %‘Sz‘lﬂz} thS] . (39)

Y EDN QneRg, imt+1

Since Q} is the worst-case martingale probability measure, we can rewrite
(39) as

N
V% inf E% [exp{@(SN) - > %'Silpi} ]:tS] ‘

’Yt+1€Dt+1 i=t41

Then Theorems 4 and 6 from [3] imply that (V?,ff) LeN, satisfies the
recurrent relation

ye€Dy

V. = inf EQx [V, e 7Stpr41| FS
t [ t+1 | Fi } (40)
V ‘t N = GW(SN)

It follows from the results of Subsection 6.3 that for any ¢ € Ny, the
set {a, b} is a support of the conditional probability distribution Q% (-|F7).
Therefore, a reasoning similar to those we used in Subsections 5.2 and 5.3
proves that for any t € Ny,

(1) Dy =R,

(2) there ex1sts a borelean function V; (z) such that
(a)V —V () [o=s.
(b) V

(x) satlsﬁes the recurrent relation

v€eR? (41)

= inf [V} (2 (1+a)) 7lg" + 7 ( (14 ) ']
— e¥(@)

Note that [V: (z (14 a))elelg* + V7, (z (1 4)) e p*] is a strictly
convex function of v € R!. Therefore, there exists a unique function ~; (z)
defined on N; x R* and ranging in R! such that

inf [V (z(1+a)) e + V(v (1+b)) e "p*] = (42)

~ER?

— V(2 (14 ) @Il g L T (3 (1 4 b)) e @by
Formula (42) yields the equality

(43)

v (x) = In —;
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Combining (41) with (42) and (43) and applying elementary transformations
to the result, we obtain

Vi@ = (Vi@ (+a)” (Vi (@ 1+0)”
{ T () |y = 0519 (44)

This yields the recurrent relation

{ IV, (z)=¢ WV, (z(1+a))+pInV,(z(1+0))

V' (2) by = o (2). (45)

It is easy to verify that the solution of recurrent relation (45) allows the
representation

=

WV; (@) =Y ¢ (e +a) (0+0) ) Cho(a) ). (46)

1

I
o

This coincides with the well-known formula (3) from [6] (see p. 744).
Formulas (43) and (46) give the explicit representation of the amount of
the risky asset 7; = 77 (7)[,_g,_, at any moment ¢ € N;.
Self-financing condition (18) from [3] implies that the amount of the
riskless asset 3] at any moment ¢ € N satisfies the recurrent relation

{ By = B4 — Si1 Ay,
B li=0 = 55

Without loss of generality, we can assume that 3 is equal to In V and 7 = 0.
Thus, we have just constructed the self-financing portfolio 7™ = (8;, %) e, -
It follows from Theorem 15 of [3] that for any ¢ € Ny, the capital X7 of the
portfolio 7* € SF admits the representation

X" =V,

where InV;, = InV, (z) |,—s,. Moreover,
(1) X7 li=n = 0 (Sn), .
(2) the initial capital X =nV,,
(3) Xﬂ- XTr +Zﬂyz i—1pPi-

Theorems 14-15 from [3] imply that the considered (1,S)-market is the
worst-case complete market and 7* is the minimax hedging portfolio.
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