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Introduction.

This is second part of the paper. Here general results of the first part are
implemented to design pricing models for special cases of European option
in one-dimensional incomplete final market and compact (1, S)-market (both
with discreet time and without transaction costs). The results are stated in
sections 5 and 6. Particularly, in section 5 we construct superhedging and
minimax portfolios for incomplete final (1, S)-market, specifies by relation
(1). Here recurrent relation (5) from Theorem 1 of [3] is used to state, that the
upper guaranteed value is a Markov random function (Theorem 16), and to
find explicit formulas for one-step transition probabilities of random sequence
(1) with respect to the worst-case measure Q∗. Example of calculation for
European option in incomplete one-dimensional compact (1, S)-market is
presented in section 6.

§5. Minimax hedging portfolio of a European option in a finite
incomplete (1, S)-market

The aim of this section is to construct the minimax hedging portfolio of a
European option in a finite (1, S)-market. Throughout this section we assume
that, with respect to a basic measure P, the returns of the risky assets are
represented by a sequence of independent and identically distributed random
variables with finitely many values.

1



6	 O. Zverev, V. Khametov, E. Shelemekh

5.1. In this subsection, we introduce a finite (1, S)-market.
Let

�
Ω,F , (Ft)t∈N0

,P


be a stochastic basis. We assume that
St,FS

t


t∈N0

is a one-dimensional sequence of random variables defined on�
Ω,F , (Ft)t∈N0

,P


such that, for each t ∈ N0, this sequence admits the
representation

St = St−1 (1 + ρt) , St|t=0 = S0 > 0, (1)

where S0 is nonrandom and {ρt}t∈N1
is a sequence of random variables. From

the economic standpoint, ρt is the return of the risky asset at the moment
t ∈ N1. Suppose that 0 < S0 ≤ c5. Let us also assume that the sequence
{ρt}t∈N1

satisfies the following conditions.
Conditions (ρ):
(1) {ρt}t∈N1

is a sequence of independent and identically distributed
random variables;

(2) for any t ∈ N1, the random variable ρt takes values in the set Γ 
{a1, . . . , al} with probabilities p1, . . . , pl, where pi = P (ρt = ai), i = 1, l;
moreover,

(a) 2 ≤ l < ∞;
(b) inf

1≤i≤l
ai > −1, sup

1≤i≤l
ai < ∞;

(c) there is no i ∈ {2, . . . , l} such that ai = 0;
(d) there are j, k ∈ {1, . . . , l} such that aj < 0, ak > 0.
It follows from (ρ) that
(1) ρt is an l-valued random variable with multinomial distribution such

that it admits the representation

ρt =
l

i=1

ai1{ρt=ai},

where 1{ρt=ai} =


1, ρt = ai
0, ρt = ai

;

(2) without loss of generality, we can assume that −1 < a1 < a2 < · · · <
al < ∞;

(3) for any t ∈ N0 random variable St > 0;
(4) the sequence {St}t∈N0

defined by recurrent relation (1) is a
homogeneous Markov chain with respect to the basic measure P.

5.2. We need the following notation and remarks.
Clearly, the introduced (1, S)-market without transaction costs is

incomplete for l ≥ 3.
Let random sequence {ρt}t∈N1

satisfy conditions (ρ) and d
N,l be a set

of probability measures on trajectories of this random sequence. Obviously
d

N,l = ∅. For any P and Q ∈ d
N,l we define pi  P (ρt = ai), qi  Q (ρt = ai).
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Conditions
�
d

N,l


:

(1) with respect to any measure Q ∈ d
N,l random variables {ρt}t∈N1

are
independent and identically distributed;

(2) if P,Q ∈ d
N,l, then for any i ∈ {1, ..., l} we have 0 < pi < 1, 0 < qi < 1,

l
i=1

pi =
l

i=1

qi = 1.

If P, Q ∈ d
N,l, then for any i ∈ {1, . . . , l}, 0 < pi < 1, 0 < qi < 1,

and
l

i=1

pi =
l

i=1

qi = 1. In this case, the Radon–Nikodym derivative of the

probability measure Q with respect to the probability measure P allows the
representation

dQ

dP
(ρ1, . . . , ρN) =

l
j=1


qj
pj

 N
t=1

1{ρt=aj}

(see [6]).
Note that in this case d

N,l is a convex weakly compact set.
Let ϕ : R+ → R1 be a bounded borelean function denoted by ϕ (x).

Assume that the contingent claim has the form ϕ (SN) = ϕ (x) |x=SN
.

In this section, we consider the problem of constructing the minimax
hedging portfolio for the European contingent claim ϕ (SN) with a time
horizon N in the introduced incomplete finite (1, S)-market.

Obviously, Theorems 10–15 of [3] hold in this case. Therefore, there
is a probability measure Q∗

l with respect to which the (1, S)-market in
consideration is the worst-case complete one. However, results of [3] does
not give any explicit formula for the one-step transition probability for the
sequence (St,Ft)t∈N0

with respect to the measure Q∗. Hence, to find the
explicit form of these probabilities and to construct the minimax hedging
portfolio, we consider recurrent relation (5) from [3] (with our assumptions
taken into account).

5.3. In this subsection, we consider recurrent relation (8) from [3] with
the above remarks taken into account.

By V
l

t we denote the FS
t -measurable random variable

V
l

t  inf
γN
t+1∈DN

t+1

sup
Q∈d

N,l

EQ


exp


ϕ (SN)−

N
i=t+1

γi∆Si


|FS

t


. (2)

A reasoning similar to that used to prove Theorem 1 in [3] shows that, in

3
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this case, the sequence

V

l

t,FS
t


t∈N1

satisfies the recurrent relation




V
l

t−1 = inf
γ∈Dt

sup
Q∈d

N,l

EQ

V

l

te
−γSt−1ρt |FS

t−1



V
l

t|t=N = eϕ(SN ).

(3)

The following theorem is the main result of this section.

T h e o r e m 16 Suppose that conditions (ρ) and
�
d

N,l


hold and the

sequence

St,FS

t


t∈N0

satisfies recurrent relation (1). Let ϕ (x) be a bounded

borelean function. We also assume that V l

t defined by (2) satisfies recurrent
relation (3).

Then the following statements are true.
(1) Dt = R1 for any t ∈ N0.
(2) There is a borelean function V

l

t (x) on N0 × R+ ranging in R+ such
that for any t ∈ N0, we have V

l

t = V
l

t (x) |x=St P-a.s.
Moreover, for any t ∈ N1 and x ∈ R+, the function V

l

t (x) satisfies the
recurrent relation



V
l

t−1 (x) = inf
γ∈R1

sup

0 < qi < 1, i = 1, l,
l

i=1

qi = 1


l

i=1

V
l

t (x (1 + ai)) e
−γxaiqi



V
l

t|t=N = eϕ(x)

.

(4)

Proof o f Theor em 16. (1) We prove that for any t ∈ N1, the set
Dt = R1. It is sufficient to prove that for any t ∈ N1 and γ ∈ R1,

sup
Q∈d

N,l

EQ

V

l

te
−γSt−1ρt |FS

t−1


< ∞ P−a.s. (5)

Note that (1) if sup
x∈R1

|ϕ (x)| ≤ c6, where c6 > 0 is a constant, then for any

t ∈ N0,
0 < V

l

t ≤ ec6 . (6)

The reasoning we used to prove inequality (52) in [3] (see the proof of
Theorem 2 in [3]) is just as good for inequality (6). Therefore, the proof
of (6) is omitted.
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(2) Representation (1) implies that for any t ∈ N0, the random variable
St admits the representation

St = S0

t
i=1

(1 + ρi) . (7)

If Fρ
t  σ {S0, ρ1, . . . , ρt}, then (7) means that for any t ∈ N1, FS

t = Fρ
t .

Further, it follows from (7) and conditions (ρ) that for any t ∈ N0, there is
a constant c7 > 0 such that

0 < St ≤ c5 (1 + al)
t ≤ c7. (8)

Consider EQ

V

l

te
−(γ,∆St)|FS

t−1


, where t ∈ N1, Q ∈ d

N,l, and γ ∈ Dt are
arbitrary. Using Dynkin–Evstigneev’s lemma [2], we obtain

0 ≤ EQ

V

l

te
−γSt−1ρt |FS

t−1


= EQ


V

l

te
−γxρt |FS

t−1


x=St−1

. (9)

The fact that {ρt}t∈N1
is a family of mutually independent random variables

with respect to any measure Q ∈ d
N,l, inequalities (6) and (9), and conditions

(ρ) imply that for any t ∈ N1 and x, γ ∈ R1, the inequalities hold

EQ

V

l

te
−γxρt |FS

t−1


≤ ec6EQ


e−γxρt |FS

t−1


= (10)

= ec6EQe−γxρt = ec6
l

i=1

e−γxaiqi ≤ ec6le|γ||x|al < ∞.

Formula (10) and conditions (ρ) imply inequality (5) for any γ ∈ R1.
Therefore, for any t ∈ N1, we obtain Dt = R1.

Now we are going to prove that V
l

t is a Markov random function. This
means that there exists a borelean function V

l

t (x) on N0 × R+ ranging in
R+ and such that for each t ∈ N1, there the representation V

l

t = V
l

t (x) |x=St

holds. To prove this, we shall need a few auxiliary remarks. Since V
l

t is an
FS

t -measurable function, Borel’s theorem yields that for each t ∈ N0, there
exists a borelean function Vt (x0, . . . , xt) defined on (R+)

t+1 and ranging in
R+, where xi ∈ R+, i = 0, t, such that

V
l

t = Vt (x0, . . . , xt)

xi=Si i=0,t .

Hence, it follows from (1), Dynkin–Evstigneev’s lemma [2], and conditions
(ρ) that for any t ∈ N1, Q ∈ d

N,l and γ ∈ Dt, the equalities hold

EQ

V

l

te
−γSt−1ρt |FS

t−1


= EQ

Vt (S0, . . . , St−1, St) e
−γSt−1ρt |FS

t−1


=

5
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= EQ
Vt (S0, . . . , St−1, St−1 (1 + ρt)) e

−γSt−1ρt |FS
t−1


=

= EQ
Vt (x0, . . . , xt−1, xt−1 (1 + ρt)) e

−γxt−1ρt |FS
t−1


xi=Si i=0,t−1

=

= EQ
Vt (x0, . . . , xt−1, xt−1 (1 + ρt)) e

−γxt−1ρt


xi=Si i=0,t−1
=

=
l

i=1

Vt (x0, . . . , xt−1, xt−1 (1 + ai)) e
−γxt−1aiqi


xi=Si i=0,t−1

=

=
l

i=1

Vt (S0, . . . , St−1, St−1 (1 + ai)) e
−γSt−1aiqi. (11)

Formula (11) yields that for any t ∈ N1 and γ ∈ Dt,

sup
Q∈d

N,l

EQ

V

l

te
−γSt−1ρt |FS

t−1


= (12)

= sup


0 < qi < 1, i = 1, l,
l

i=1

qi = 1




l
i=1

Vt (S0, . . . , St−1, St−1 (1 + ai)) e
−γSt−1aiqi.

Taking into account the above remarks and (12), we can rewrite (3) as

Vt (S0, . . . , St−1) =

= inf
γ∈R1

sup


0 < qi < 1, i = 1, l,
l

i=1

qi = 1




l
i=1

Vt (S0, . . . , St−1, St−1 (1 + ai)) ×

×e−γSt−1aiqi

.

Let us now prove that V
l

t is a Markov random function. At first, we will
prove that for any t ∈ N0, there is a borelean function V

l

t (x) ranging in
R+ denoted by V

l

t (x) and such that V l

t (St)  V
l

t (x) |x=St satisfies recurrent
relation (13). We proceed by the backward induction. Since V

l

t|t=N = eϕ(SN ),
our assertion is true for t = N .

6
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Suppose that V
l

t = V
l

t (St). We must prove that V
l

t−1 = V
l

t−1 (St−1).
Recurrent relation (13) yields that

V
l

t−1 = inf
γ∈R1

sup



0 < qi < 1, i = 1, l,
l

i=1

qi = 1





l
i=1

V
l

t (St−1 (1 + ai)) e
−γSt−1aiqi.

(13)
Since the right-hand side of (13) is measurable with respect to the σ-algebra
σ {St−1} generated by the random variable St−1, the left-hand side of (13)
is also measurable with respect to the σ-algebra σ {St−1}. Therefore, V l

t is a
Markov random function. Thus, recurrent relation (13) takes the form (4).
This completes the proof of the theorem.

5.4. In this subsection, we prove that the inner supremum and the outer
infimum in recurrent relation (4) are attained. We also prove the existence
of the unique martingale measure in the considered (1, S)-market.

The main result of this subsection is the following theorem.

T h e o r e m 17 Let the assumptions of Theorem 16 be satisfied. Then the
following assertions are true.

(1) For any t ∈ N1 and x ∈ R+, the borelean function lnV
l

t (x) satisfies
the recurrent relation




lnV
l

t−1 (x) = inf
γ∈R1

max
1≤i≤l


lnV

l

t (x (1 + ai))− γxai



lnV
l

t (x) |t=N = ϕ (x) .
(14)

(2) There are reflections i∗ : N1 × R+ → Γ; j∗ : N1 × R+ → Γ and
γ∗ : N1 ×R+ → R1 respectively denoted by i∗t (x), j∗t (x) and γ∗

t (x) such that

inf
γ∈R1

max
1≤i≤l


lnV

l

t (x (1 + ai))− γxai


= lnV

l

t

�
x
�
1 + ai∗t (x)


− γ∗

t (x) xai∗t (x) =

= lnV
l

t

�
x
�
1 + aj∗t (x)


− γ∗

t (x) xaj∗t (x), (15)

moreover, for any t ∈ N1 and x ∈ R+:
(a) ai∗t (x) < 0, aj∗t (x) > 0,
(b) γ∗

t (x) can be calculated by the formula

γ∗
t (x) =

1

x
�ai∗t (x)

+ aj∗t (x)
 ln V

l

t

�
x
�
1 + aj∗t (x)



V
l

t

�
x
�
1 + ai∗t (x)

 . (16)

7
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(3) Formula (14) can be rewritten as


lnV
l

t−1 (x) = (1− q∗t (x)) lnV
l

t

�
x
�
1 + ai∗t (x)


+ q∗t (x) lnV

l

t

�
x
�
1 + aj∗t (x)



lnV
l

t (x) |t=N = ϕ (x) ,
(17)

where

q∗t (x) =

ai∗t (x)
ai∗t (x)

+ aj∗t (x)
. (18)

(4) There is a unique probability measure Q∗
l with respect to which: (i)

the Markov random function

lnV

l

t (St) ,FS
t


t∈N0

satisfies recurrent relation

(17), (ii) the sequence
�
St,FS

t


t∈N0

satisfying recurrent relation (1) is a
homogeneous Markov chain. Moreover, for each t ∈ N1, the random variable
ρt takes two values: ai∗t (St−1) or aj∗t (St−1) with the conditional probabilities

Q∗ �ρt = ai∗t (St−1)|St−1


= 1− q∗t (St−1) (19)

�
Q∗ �ρt = aj∗t (St−1)|St−1


= q∗t (St−1)


,

where q∗t (St−1)  q∗t (x) |x=St−1 and q∗t (x) is defined by (18), (iii) the measure
Q∗ is a unique martingale measure, i.e., for each t ∈ N1,

EQ∗ �
ρt|FS

t−1


= 0. (20)

Proof o f Theor em 17. (1) First, we note that for any t ∈ N1 and
x ∈ R+, we have

sup


0 < qi < 1, i = 1, l,
l

i=1

qi = 1




l
i=1

V
l

t (x (1 + ai)) e
−γxaiqi =

= max


0 ≤ qi ≤ 1, i = 1, l,
l

i=1

qi = 1




l
i=1

V
l

t (x (1 + ai)) e
−γxaiqi.

It is clear that

max


0 ≤ qi ≤ 1, i = 1, l,
l

i=1

qi = 1




l
i=1

V
l

t (x (1 + ai)) e
−γxaiqi = (21)

8
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= max
1≤i≤l

V
l

t (x (1 + ai)) e
−γxai .

Therefore, combining recurrent relation (4) with (21), we obtain

V
l

t−1 (x) = inf
γ∈R1

max
1≤i≤l

V
l

t (x (1 + ai)) e
−γxai . (22)

Since for any t ∈ N1 and x ∈ R+, the function V
l

t (x) > 0, formula (22)
implies that lnV

l

t (x) satisfies (14).
(2) By definition

ψ (t, x, γ)  max
1≤i≤l


lnV

l

t (x (1 + ai))− γxai


.

For any (t, x), the function ψ (t, x, γ) is the upper envelope [5] of the set of
functions


lnV

l

t (x (1 + ai))− γxai


i=1,l

treated as functions of γ ∈ R1. It

is easy to verify that for any (t, x), the function ψ (t, x, γ) is a continuous,
piecewise linear, convex, bounded from below function of γ ∈ R1. Moreover,

ψ (t, x, γ) →
|γ|→∞

∞.

Therefore, there exists a borelean function γ∗ : N0 × R+ → R1 denoted by
γ∗
t (x) such that

inf
γ∈R1

ψ (t, x, γ) = ψ (t, x, γ∗
t (x)) .

Let us find the explicit formula for γ∗
t (x). It follows from the properties

of the function ψ (t, x, γ) and conditions (ρ) that for each (t, x), there are
i∗t (x) and j∗t (x) ranging in Γ and such that:

(a) ai∗t (x) < 0 and

ψ (t, x, γ∗
t (x)) = lnV

l

t

�
x
�
1 + ai∗t (x)


− γ∗

t (x) xai∗t (x), (23)

(b) aj∗t (x) > 0 and

ψ (t, x, γ∗
t (x)) = lnV

l

t

�
x
�
1 + aj∗t (x)


− γ∗

t (x) xaj∗t (x). (24)

It is obvious that for each (t, x), we have i∗t (x) < j∗t (x). Formulas (23) and
(24) yield that γ∗

t (x) satisfies the equality

lnV
l

t

�
x
�
1 + ai∗t (x)


− γ∗

t (x) xai∗t (x) = (25)

= lnV
l

t

�
x
�
1 + aj∗t (x)


− γ∗

t (x) xaj∗t (x).

9
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Solving (25) for γ∗
t (x), we obtain (16).

(3) Applying (16), (24), and some elementary transformations to recurrent
relation (14), we obtain (17) and (18).

(4) Formulas (17) and (18) imply that there exists a probability measure
Q∗ such that: (i) {St}t∈N0

is an inhomogeneous Markov chain, (ii) for
any t ∈ N1, the random variable ρt takes values ai∗t (St−1) and aj∗t (St−1)

with the conditional probabilities Q∗ �ρt = ai∗t (St−1)|St−1


= 1 − q∗t (St−1)

and Q∗ �ρt = aj∗t (St−1)|St−1


= q∗t (St−1), respectively, where q∗t (St−1) =

q∗t (x) |x=St−1 and q∗t (x) is defined by (18). Hence, we have (20). Formula (20)
implies that the measure Q∗ is a unique martingale measure. This completes
the proof of the theorem.

5.5. In this subsection, we prove that the measure Q∗ constructed in
Subsection 5.3 is the worst-case measure.

Th e o r e m 18 Let the assumptions of Theorem 17 be satisfied. Then the
probability measure Q∗ is the worst-case one.

Proof o f Theor em 18. Assume the opposite, i.e., assume that Q∗

is not the worst-case measure. It follows from (13) that there is t ∈ N0 such
that

1 = inf
γ∈R1

sup
Q∈d

N,l

EQ


V

l

t

V
l

t−1

e−γ∆St |FS
t−1


> (26)

> inf
γ∈R1

EQ∗

exp


∆ lnV

l

t − γ∆St


|FS

t−1


.

We have already proved (see the second assertion of Theorem 17) that there
is an Ft−1-measurable random variable γ∗

t  γ∗
t (x) |x=St−1 such that

inf
γ∈R1

EQ∗

exp


∆ lnV

l

t − γ∆St


|FS

t−1


=

= EQ∗

exp


∆ lnV

l

t − γ∗
t∆St


|FS

t−1


.

Inequality (26) and the last equality yield

0 > lnEQ∗

exp


∆ lnV

l

t − γ∗
t∆St


|FS

t−1


. (27)

Applying Jensen’s inequality to (27), we have

0 > EQ∗

∆ lnV

l

t − γ∗
t∆St|FS

t−1


. (28)

10
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On the other hand, (20) imply the martingale property of the sequence
{St,Ft}t∈N0

with respect to the measure Q∗. Therefore, using (17) and (20),
we obtain

0 = EQ∗

∆ lnV

l

t|FS
t−1


= EQ∗


∆ lnV

l

t − γ∗
t∆St|FS

t−1


(29)

Comparing (28) with (29) we obtain a contradiction. Thus, Q∗ is the worst-
case measure. This completes the proof of the theorem.

5.6. In this subsection, we prove that the contingent claim admits an
S-representation with respect to the measure Q∗. The main result of this
subsection is the following theorem.

T h e o r e m 19 Suppose that the assumptions of Theorem 18 are satisfied.
Then any bounded contingent claim ϕ (SN) admits an S-representation with
respect to the martingale measure Q∗, i.e.,

ϕ (SN) = EQ∗
[ϕ (SN) |F0] +

N
i=1

γ∗
i (Si−1)Si−1ρi, (30)

where γ∗
i (Si−1) is defined by (16).

Proof o f Theor em 19. Note that it follows from Theorems 17
and 18 that we can rewrite recurrent relation (14) as

1 = EQ∗

exp


∆ lnV

l

t − γ∗
t∆St


|FS

t−1


. (31)

Let us prove that the random sequence

lnV

l

t,Ft


t∈N0

satisfies the
recurrent relation


∆ lnV

l

t = γ∗
t∆St,

lnV
l

t|t=0 = lnV
l

0, lnV
l

t|t=N = ϕ (SN)
(32)

with respect to measure Q∗.
Indeed, on the one hand, it follows from (31) and Jensen’s inequality that

for any t ∈ N1,

0 = lnEQ∗

exp


∆ lnV

l

t − γ∗
t∆St


|FS

t−1


≥ (33)

≥ EQ∗

∆ lnV

l

t − γ∗
t∆St|FS

t−1



On the other hand, in the proof of Theorem 18, equality (29) was shown to
be true. It is clear that inequality (33) becomes the equality if and only if the

11
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random variable

∆ lnV

l

t − γ∗
t∆St


is FS

t−1-measurable. Therefore, we obtain

recurrent relation (32). It is obvious that lnV
l

t|t=0 = lnV
l

0 and lnV
l

t|t=N =
ϕ (SN). Since Q∗ is a martingale measure, (32) yields S-representation (30)
and the equality

lnV
l

0 = EQ∗
[ϕ (SN) |F0]

with respect to Q∗. This completes the proof of the theorem.
5.7. In this subsection, we construct the minimax hedging portfolio of an

European option in a finite (1, S)-market.

T h e o r e m 20 Let ϕ (SN) be a bounded contingent claim. Suppose that the
assumptions of Theorem 19 are satisfied. Then the finite incomplete (1, S)-
market described by recurrent relation (1) is the worst-case complete market,
i.e., there exists a measure Q∗ and a minimax hedging self-financing portfolio
π∗ = (β∗

t , γ
∗
t )t∈N0

such that:
(1) for any t ∈ N1, the predictable sequence (γ∗

t )t∈N0
is defined by (16),

and γ∗
0 can be chosen to be zero;

(2) the predictable sequence (β∗
t )t∈N0

is defined by the recurrent relation

β∗
t = β∗

t−1 − St−1∆γ∗
t , β∗

t |t=0 = β∗
0 , (34)

and β∗
0 can be chosen equal to lnV

l

0 (S0);
(3) the capital Xπ∗

t of the portfolio π∗ at any moment t ∈ N0 admits the
representations

Xπ∗

t = β∗
t + γ∗

t St (35)

Xπ∗

t = Xπ∗

0 +
t

i=1

γ∗
i Si−1ρi, (36)

where Xπ∗
0 = lnV

l

0 (S0);
Xπ∗

t = lnV
l

t (St) ,

where lnV
l

t (St) satisfies recurrent relation (17) and Xπ∗
N = ϕ (SN).

Proof o f Theor em 20. Since the amount of the risky asset γ∗
t

at any moment t ∈ N1 is defined by (16), we can use the self-financing
condition (18) from [3] to obtain recurrent relation (34) for the amount of the
riskless asset β∗

t . Therefore, the capital Xπ∗
t of the portfolio π∗ = (β∗

t , γ
∗
t )t∈N0

allows representation (35) for any t ∈ N0. Formulas (35) and (18) from [3]
imply that ∆Xπ∗

t admits the representation

∆Xπ∗

t = γ∗
t∆St = γ∗

t St−1ρt. (37)

12
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Comparing (32) with (37), for any t ∈ N1, we obtain

∆Xπ∗

t = ∆ lnV
l

t. (38)

Let us choose Xπ∗
0 = lnV

l

0. We use (38) to show that for any t ∈ N0, it is
true that Xπ∗

t = lnV
l

t. Therefore, Xπ∗
N = lnV

l

N = ϕ (SN). Thus, the (1, S)-
market described by recurrent relation (1) is the worst-case complete one, and
the portfolio π∗ described by recurrent relations (16), (17) and (34) is the
minimax hedging portfolio with respect to the measure Q∗. This completes
the proof of the theorem.

R e ma r k 11 (1) Condition
�
ρc)


can be omitted. This will lead to more

sophisticated formulas for the initial price of the option and for the portfolio
components.

(2) Suppose that q∗ = Q∗(ρt = a) = b
|a|+b

, p∗ = Q∗(ρt = b) = |a|
|a|+b

, where
−1 < a < 0 < b < ∞, are unique. Following the same reasoning, it is easy
to prove that such a binomial (1, S)-market is the worst-case one.

§6. An example.

In this section, we consider an example of calculating the minimax
hedging portfolio for a European option in a (1, S)-market under the
assumption that the return of the risky asset is a sequence of independent
and identically distributed random variables with respect to a basic measure
P such that their probability distribution has a compact support.

6.1. Let

St,FS

t


t∈N0

be an adapted random sequence of prices on
a stochastic basis

�
Ω,F , (Ft)t∈N0

,P

. Suppose that


St,FS

t


t∈N0

satisfies
recurrent relation (1). Assume that the random sequence


ρt,FS

t


t∈N1

has
the following properties with respect to the basic measure P:

(i)

ρt,FS

t


t∈N1

are independent and identically distributed random
variables;

(ii) [a, b], where −1 < a < 0 < b < ∞, is the support of the probability
distribution of the random variable ρt.

In this case, for any t ∈ N0, the random variable St > 0 P-a.s. It follows
from the above assumptions that the sequence {St}t∈N0

is a homogeneous
Markov sequence with respect to the measure P.

Let ϕ : R+ → R1 be a bounded borelean function denoted by ϕ (x). Let
ϕ (SN) = ϕ (x) |x=SN

be a contingent claim.
By M [a, b] we denote the set of probability measures with support [a, b].

By definition MN [a, b]  M [a, b]× · · · ×M [a, b]  
N

. It is well known (see [1])

13
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that M [a, b] and MN [a, b] are convex compact sets (in the topology of weak
convergence σ

�
MN ,

�
MN

∗).
Let c

N be a subset of N such that: (1) the random variables {ρt}t≥1

are independent and identically distributed with respect to any measure
QN ∈ c

N ; (2) any measure QN ∈ c
N is absolutely continuous with

respect to the Lebesque measure.
Let us summarize some properties of the set c

N :
(1) c

N = ∅ and c
N ⊂ MN [a, b];

(2) c
N is a convex weakly compact set;

(3) the sequence defined by (1) is a homogeneous Markov sequence with
respect to any measure QN ∈ c

N .
It is easy to verify that the above-introduced (1, S)-market is incomplete.
6.2. In this subsection, we construct the minimax hedging portfolio of

a European contingent claim with time horizon N in the above-described
(1, S)-market.

Note that, in this case, all assumptions of Theorems 5, 11, 13–15 from [3]
are satisfied. Therefore there exists: (1) the worst-case (martingale and
discrete) probability measure Q∗

N such that the considered (1, S)-market is
the worst-case complete one with respect to Q∗

N ; (2) the minimax hedging
portfolio π∗. Therefore, Q∗

N ∈
�
MN [a, b] \c

N


∩MN is a unique (in a sense

of Remark 7 from [3]) martingale measure. Hence Q∗
N is an extreme point of

this set. Thus, using Choquet’s theorem [4, ?], we can determine the form of
the distribution of the random variable ρt (with respect to the measure Q∗

N)
and construct the minimax hedging portfolio π∗.

6.3. In this subsection, we prove that {a, b}N is the support of the measure
Q∗

N .
Since Q∗

N ∈
�
MN [a, b] \c

N


∩MN , this is a product measure, i.e., Q∗

N =
Q∗

1 × · · · × Q∗
1  

N

, where Q∗
1 ∈ M [a, b]. Since Q∗

N is a martingale measure, we

have
EQ∗

Nρt = 0.

Therefore, zero is the barycenter [4] of the measure Q∗
1. It is obvious that

the measure Q∗
1 satisfies the assumptions of Choquet’s theorem [4, ?]. Hence,

the support of the measure Q∗
1 is a subset of the set of extreme points of

[a, b]. Thus, we see that the random variable ρ1 takes the values a and b with
respect to the measure Q∗

1 with probabilities q∗ = Q∗
1 (ρ1 = a) and p∗ = 1−q∗,

respectively. Since zero is the barycenter of the measure Q∗
1, we see that

q∗ = b
b+|a| . Thus, we have proved that {a, b}N is a support of the measure

Q∗
N .

14
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6.4. We denote

V
c

t  ess inf
γN
t+1∈DN

t+1

ess sup
QN∈c

N

EQN


exp


ϕ (SN)−

N
i=t+1

γiSi−1ρi


|FS

t


. (39)

Since Q∗
N is the worst-case martingale probability measure, we can rewrite

(39) as

V
c

t  inf
γN
t+1∈DN

t+1

EQ∗
N


exp


ϕ (SN)−

N
i=t+1

γiSi−1ρi


|FS

t


.

Then Theorems 4 and 6 from [3] imply that
�
V

c

t ,FS
t


t∈N0

satisfies the
recurrent relation


V

c

t = inf
γ∈Dt

EQ∗
N


V

c

t+1e
−γStρt+1 |FS

t



V
c

t |t=N = eϕ(SN ).
(40)

It follows from the results of Subsection 6.3 that for any t ∈ N0, the
set {a, b} is a support of the conditional probability distribution Q∗

N(·|FS
t ).

Therefore, a reasoning similar to those we used in Subsections 5.2 and 5.3
proves that for any t ∈ N0,

(1) Dt = R1,
(2) there exists a borelean function V

c

t (x) such that
(a) V c

t = V
c

t (x) |x=St ,
(b) V

c

t (x) satisfies the recurrent relation


V
c

t−1 (x) = inf
γ∈R1


V

c

t (x (1 + a)) eγx|a|q∗ + V
c

t (x (1 + b)) e−γxbp∗


V
c

t (x) |t=N = eϕ(x).
(41)

Note that

V

c

t (x (1 + a)) eγx|a|q∗ + V
c

t (x (1 + b)) e−γxbp∗


is a strictly
convex function of γ ∈ R1. Therefore, there exists a unique function γ∗

t (x)
defined on N1 × R+ and ranging in R1 such that

inf
γ∈R1


V

c

t (x (1 + a)) eγx|a|q∗ + V
c

t (x (1 + b)) e−γxbp∗

= (42)

= V
c

t (x (1 + a)) eγ
∗
t (x)x|a|q∗ + V

c

t (x (1 + b)) e−γ∗
t (x)xbp∗.

Formula (42) yields the equality

γ∗
t (x) =

1

x (b+ |a|)
ln

V
c

t (x (1 + b))

V
c

t (x (1 + a))
. (43)

15
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Combining (41) with (42) and (43) and applying elementary transformations
to the result, we obtain


V

c

t−1 (x) =
�
V

c

t (x (1 + a))
q∗ �

V
c

t (x (1 + b))
p∗

V
c

t (x) |t=N = eϕ(x).
(44)

This yields the recurrent relation


lnV
c

t−1 (x) = q∗ lnV
c

t (x (1 + a)) + p∗ lnV
c

t (x (1 + b))

lnV
c

t (x) |t=N = ϕ (x) .
(45)

It is easy to verify that the solution of recurrent relation (45) allows the
representation

lnV
c

t (x) =
N−t
i=0

ϕ

x (1 + a)i (1 + b)N−t−i


C i

N−t (q
∗)i (p∗)N−t−i . (46)

This coincides with the well-known formula (3) from [6] (see p. 744).
Formulas (43) and (46) give the explicit representation of the amount of

the risky asset γ∗
t = γ∗

t (x)|x=St−1
at any moment t ∈ N1.

Self-financing condition (18) from [3] implies that the amount of the
riskless asset β∗

t at any moment t ∈ N0 satisfies the recurrent relation


β∗
t = β∗

t−1 − St−1∆γ∗
t ,

β∗
t |t=0 = β∗

0 .

Without loss of generality, we can assume that β∗
0 is equal to lnV

c

0 and γ∗
0 = 0.

Thus, we have just constructed the self-financing portfolio π∗ = (β∗
t , γ

∗
t )t∈N0

.
It follows from Theorem 15 of [3] that for any t ∈ N0, the capital Xπ∗

t of the
portfolio π∗ ∈ SF admits the representation

Xπ∗

t = lnV
c

t ,

where lnV
c

t = lnV
c

t (x) |x=St . Moreover,
(1) Xπ∗

t |t=N = ϕ (SN),
(2) the initial capital Xπ∗

0 = lnV
c

0,

(3) Xπ∗
t = Xπ∗

0 +
t

i=1

γ∗
i Si−1ρi.

Theorems 14–15 from [3] imply that the considered (1, S)-market is the
worst-case complete market and π∗ is the minimax hedging portfolio.
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